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ABSTRACT: We introduce the VirtualResolutions package for the computer algebra system
Macaulay2. This package has tools to construct, display, and study virtual resolutions for products
of projective spaces. The package also has tools for generating curves in P1

×P2, providing sources
of interesting virtual resolutions.

1. INTRODUCTION. Recently, Berkesch, Erman, and Smith [Berkesch et al. 2017] introduced the notion
of virtual resolutions for subvarieties of smooth projective toric varieties as an analogue to minimal
graded free resolutions for subvarieties of projective space. A virtual resolution is a complex of finitely
generated graded free modules over the Cox ring of a smooth projective toric variety that becomes exact
upon passing to the corresponding complex of coherent sheaves.

While graded minimal free resolutions are useful for studying quasicoherent sheaves on projective
spaces, when working over a product of projective spaces or, more generally, over smooth projective
toric varieties, they are often long and cumbersome to compute. By allowing a limited amount of
homology, virtual resolutions offer a more flexible alternative for studying toric subvarieties when com-
pared to graded minimal free resolutions. This article introduces the VirtualResolutions package
for [Macaulay2], which provides tools for constructing and studying virtual resolutions over products of
projective spaces.

The VirtualResolutions project began in 2018 at the Macaulay2 Workshop at the University of
Wisconsin – Madison, building on previous work of Christine Berkesch, David Eisenbud, Daniel Erman,
and Gregory G. Smith. Along with them, the authors of this paper developed the VirtualResolutions
package to generate examples of virtual resolutions in products of projective spaces. In particular, the
package provides tools to generate examples of virtual resolutions and to check whether chain complexes
are virtual resolutions. These methods are introduced and demonstrated in Section 2.

In Section 3, we concentrate on virtual resolutions arising from curves in P1
×P2. This is the simplest

case after points in a product of projective spaces. We demonstrate several methods for finding the
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defining ideals of curves in the Cox ring of P1
×P2, including monomial curves, rational curves, and

curves from P3.

2. CONSTRUCTING VIRTUAL RESOLUTIONS. If X is a smooth projective toric variety, we denote its
Pic(X)-graded Cox ring, as defined in [Cox 1995], by Cox(X) (see also Section 5.2 of [Cox et al. 2011]).
Denote the associated irrelevant ideal of X by B ⊂ Cox(X). A virtual resolution of a Pic(X)-graded
module over Cox(X) is defined as follows:

Definition 2.1 [Berkesch et al. 2017, Definition 1.1]. A virtual resolution of a Pic(X)-graded Cox(X)-
module M is a chain complex of Pic(X)-graded free Cox(X)-modules

F• := [F0 F1 F2 · · · ]

such that the corresponding complex of OX -modules is a locally free resolution of the sheaf M̃ .

One can rephrase the definition of a virtual resolution in a way that is more practical for computations:
a complex F• of Pic(X)-graded free Cox(X)-modules is a virtual resolution of M if and only if the
following two conditions are satisfied:

(1) The B-saturation of H0(F•) is isomorphic to the B-saturation of M.

(2) The homology module Hi (F•) is supported only on B for all i > 0.

For the remainder of this paper, we will focus on the case when X is a product of projective spaces,
since [Berkesch et al. 2017] demonstrates several ways to construct virtual resolutions in this case. We
let n = (n1, n2, . . . , nr ) ∈ (Z≥0)

r and Pn
= Pn1 × Pn2 × · · · × Pnr. Further, we write S for Cox(Pn),

which is graded by Pic(Pn)∼= Zr.
Given this setup, Berkesch, Erman, and Smith show that it is possible to construct a virtual resolution

of a Zr -graded S-module M from the graded minimal free resolution of M and d ∈ Zr an element of the
multigraded Castelnuovo–Mumford regularity as introduced in [Maclagan and Smith 2004]. They call a
virtual resolution constructed in this manner the virtual resolution of the pair (M, d).

Theorem 2.2 [Berkesch et al. 2017, Theorem 1.3]. Let M be a finitely generated Zr -graded B-saturated
S-module that is d-regular. If G is the free subcomplex of a minimal free resolution of M consisting of
all summands generated in degrees at most d+ n, then G is a virtual resolution of M.

Notice that the virtual resolution of the pair (M, d) is a subcomplex of the minimal free resolution, so
its length is at most the projective dimension of M. Also note that we are justified in saying “the” virtual
resolution of the pair (M, d) because this complex is unique up to isomorphism.

Example 2.3. Consider three points ([1 : 1], [1 : 4]), ([1 : 2], [1 : 5]), and ([1 : 3], [1 : 6]) in P1
×P1.

Using Macaulay2, we may compute the B-saturated ideal defining these three points.
i1 : needsPackage "VirtualResolutions";
i2 : X = toricProjectiveSpace(1) ** toricProjectiveSpace(1);
i3 : S = ring X; B = ideal X;
o3 : Ideal of S
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i4 : J = saturate(intersect(
ideal(x_1 - x_0, x_3 - 4*x_2),
ideal(x_1 - 2*x_0, x_3 - 5*x_2),

ideal(x_1 - 3*x_0, x_3 - 6*x_2)), B);
o4 : Ideal of S

One can show the Z2-graded minimal free resolution of S/J is the following complex.

S

S(0,−3)
⊕

S(−1,−2)
⊕

S(−2,−1)
⊕

S(−3, 0)
⊕

S(−1,−1)

S(−1,−3)2

⊕

S(−2,−2)2

⊕

S(−3,−1)2

S(−2,−3)
⊕

S(−3,−2)
0

We may view the multigraded Betti table for the above graded minimal free resolution.

i5 : minres = res J;
i6 : multigraded betti minres

0 1 2 3
o6 = 0: 1 . . .

2: . ab . .
3: . a3+a2b+ab2+b3 . .
4: . . 2a3b+2a2b2+2ab3 .
5: . . . a3b2+a2b3

o6 : MultigradedBettiTally

In order to compute a virtual resolution of S/J, we find an element of the multigraded Castelnuovo–
Mumford regularity of the module [Maclagan and Smith 2004, Definition 4.1]. The minimal elements
in the multigraded regularity of S/J can be computed via the multigradedRegularity command.

i7 : multigradedRegularity(X, S^1/J)
o7 = {{0, 2}, {1, 1}, {2, 0}}
o7 : List

This computation relies on the fact that a B-saturated S-module M over a product of projective spaces
Pn is d-regular provided that the following conditions are satisfied:

(1) The Hilbert function H(M, d) agrees with the Hilbert polynomial PM(d).

(2) H i (Pn, M̃(a))= 0 for all i > 0 and twists a such that d j − c j ≤ a j with 0≤ c j and
∑

j c j = i .

In particular, the function multigradedRegularity utilizes the Macaulay2 package TateOnProducts
[Erman et al. 2019] to compute the sheaf cohomology of twists of M̃ , which allows one to find elements
of the multigraded regularity of the sheaf [Eisenbud et al. 2015, Proposition 3.11].

The function virtualOfPair implements Theorem 2.2 to compute the virtual resolution of a pair.
We call the function below in order to compute the virtual resolution of the pair (S/J, (2, 0)). Note that
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since we must remove all twists generated in degrees not less than or equal to n+ d from the graded
minimal free resolution, we input the element (3, 1)= (1, 1)+ (2, 0) in virtualOfPair.

i8 : vres = virtualOfPair(res J, {{3, 1}})

1 3 2
o8 = S <-- S <-- S <-- 0

0 1 2 3
i9 : multigraded betti vres

0 1 2
o9 = 0: 1 . .

2: . ab .
3: . a3+a2b .
4: . . 2a3b

o9 : MultigradedBettiTally

The above virtual resolution of the pair (S/J, (2, 0)) is shorter and thinner than the graded minimal
free resolution of S/J.

When a minimal free resolution is already known or provided as input, virtualOfPair takes the
appropriate subcomplex of that resolution. Otherwise, virtualOfPair computes a virtual resolution
by using the induced Schreyer orders to iteratively compute syzygies in the desired degrees. Note that
while the resulting virtual resolutions from the two strategies may have different differentials, the chain
complexes are unique up to isomorphism.

Continuing the example of three points in P1
×P1, we again use virtualOfPair to compute the

virtual resolution of S/J. In this case, Macaulay2 does not have the minimal free resolution cached, so
virtualOfPair uses Schreyer’s method to obtain a virtual resolution isomorphic to the one above.

i10 : multigraded betti virtualOfPair(S^1/J, {{3, 1}})

0 1 2
o10 = 0: 1 . .

2: . ab .
3: . a3+a2b .
4: . . 2a3b

o10 : MultigradedBettiTally

Remark 2.4. In larger experiments, Schreyer’s method is significantly more efficient than first computing
a minimal free resolution. For instance, finding a virtual resolution for the saturated ideal of five points
in (P1)4 using Schreyer’s method is two orders of magnitude faster. These time savings grow even more
dramatically as the number of points or number of factors of P1 are increased.

We may check that vres is indeed a virtual resolution by using the isVirtual function.
i11 : isVirtual(B, vres)
o11 = true

By default, isVirtual checks whether the homology of the given chain complex is supported only
on the irrelevant ideal. More specifically, isVirtual checks whether the annihilator of the homology
of the given chain complex saturates to the entire ring.
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Remark 2.5. Computing the saturation of an ideal is a critical but computationally costly step in many
aspects of studying virtual resolutions. Therefore, our package utilizes new saturation methods which are
under development by Michael Stillman for future release in Macaulay2. These methods are currently
stored in the auxiliary file Colon.m2, but will be removed once they have been released separately.

As an alternative approach, we also implement the method presented in Theorem 1.3 of [Loper 2019]
for checking whether a complex is virtual. This is done by setting Strategy => Determinantal. In
this case, two conditions are checked: one involving the ranks of the maps in the chain complex, and the
other involving the depths of the B-saturated ideals of minors of the maps. Typically the default strategy
is faster than the determinantal strategy, as the determinantal strategy must compute the ideal of minors
for each map in the chain complex, which is generally computationally expensive.

Another way to generate virtual resolutions is by using the following theorem of [Berkesch et al.
2017], which provides a method for producing virtual resolutions of ideals defining zero-dimensional
subschemes of Pn.

Theorem 2.6 [Berkesch et al. 2017, Theorem 4.1]. If Z ⊂ Pn is a zero-dimensional scheme and I is
the corresponding B-saturated S-ideal, then there exists a ∈ Nr with ar = 0 such that the minimal free
resolution of S/(I ∩ Ba) has length equal to |n| = dim Pn. Moreover, any a ∈ Nr with ar = 0 and other
entries sufficiently positive yields such a virtual resolution of S/I.

The function resolveViaFatPoint computes Ba
=

⋂r
i=1(xi,0, xi,1, . . . , xi,ni )

ai , intersects it with
the input ideal J, and computes the minimal free resolution of S/(J ∩ Ba).

Example 2.7. Again consider the ideal of three points in P1
×P1 as in Example 2.3. We use the function

resolveViaFatPoint to compute a virtual resolution of J.

i12 : C = resolveViaFatPoint(J, B, {2, 0})

1 4 3
o12 = S <-- S <-- S <-- 0

0 1 2 3

o12 : ChainComplex
i13 : multigraded betti C

0 1 2
o13 = 0: 1 . .

3: . a3+3a2b .
4: . . 3a3b

o13 : MultigradedBettiTally
i14 : isVirtual(B, C)
o14 = true

Note that the virtual resolutions obtained by resolveViaFatPoint may not be a subcomplex of the
minimal resolution of M (as demonstrated by Examples 2.3 and 2.7), and thus need not occur as the
virtual resolution of (M, d) for a given regularity d. Thus, resolveViaFatPoint is a useful method
for producing new and interesting examples of virtual resolutions.
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3. CONSTRUCTING CURVES IN P1
×P2. One source of potentially interesting virtual resolutions comes

from studying curves in P1
×P2. With this in mind, the VirtualResolutions package contains func-

tions for constructing a limited class of curves in P1
×P2, which we believe may be of interest to other

researchers. In particular, there are functions for generating monomial curves, rational curves, and curves
arising from curves in P3.

The main function in this direction is curveFromP3toP1P2. Given the defining ideal of a curve in P3,
this function returns the defining ideal of a curve in P1

×P2 constructed in the following way: given
projections π1 : P

3 99K P1 and π2 : P
3 99K P2, there is an induced rational map

ψ : P3 99K P1
×P2,

and this is the map under which we are computing the image of our curve C .
The projections that curveFromP3toP1P2 uses are fixed. In particular, it uses the coordinate projec-

tions

π1([z0 : z1 : z2 : z3])= [z0 : z1] and π2([z0 : z1 : z2 : z3])= [z1 : z2 : z3].

As one might wish to preserve the degree of the curve C ⊂ P1
×P2, the function curveFromP3toP1P2

has an option called PreserveDegree. When this option is set to true, the function will return an error
if the given curve intersects the base locus of these projections.

Example 3.1. The code below uses curveFromP3toP1P2 to construct a curve in P1
× P2 from the

defining ideal of the twisted cubic C ⊂ P3.

i15 : R = ZZ/101[z_0, z_1, z_2, z_3];
i16 : I = ideal(z_0*z_2-z_1^2, z_1*z_3-z_2^2, z_0*z_3-z_1*z_2);
o16 : Ideal of R
i17 : J = curveFromP3toP1P2 I

2
o17 = ideal (x - x x , - x x + x x , - x x + x x )

1,1 1,0 1,2 0,1 1,1 0,0 1,2 0,1 1,0 0,0 1,1

ZZ
o17 : Ideal of ---[x , x , x , x , x ]

101 0,0 0,1 1,0 1,1 1,2

We can check that the ideal J defines a curve in P1
×P2 by computing its dimension. Note that since J is

an ideal in the Cox ring of P1
×P2, we expect J to be three-dimensional, since in general the dimension

of a subscheme defined by a Pic(X)-graded ideal J ⊂ Cox(X) is given by dim J − rank Pic(X).

i18 : dim J
o18 = 3

The function randomCurveP1P2 constructs a random curve in P1
×P2 by calling the curve function

from the package SpaceCurves [Zhang 2018] to randomly generate a curve C ⊂ P3 of specified degree
and genus; see [Zhang 2018, Section 2] for a detailed discussion of the inner workings of curve. The
function randomCurveP1P2 then constructs a curve C ′ ⊂ P1

×P2 from C using curveFromP3toP1P2.
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Example 3.2. Using the randomCurveP1P2 function we produce a random curve in P1
×P2 coming

from a curve of degree 7 and genus 3 in P3. Additionally, we check that the resulting ideal defines a
curve.

i19 : I = randomCurveP1P2(7, 3);
ZZ

o19 : Ideal of ---[x , x , x , x , x ]
101 0,0 0,1 1,0 1,1 1,2

i20 : S = ring I;
i21 : dim I
o21 = 3

Using the multigradedRegularity function, one can see that (2, 3) is a minimal element in the multi-
graded regularity of this curve. Note that we first saturate the ideal defining our curve; this is necessary
to ensure that the output of multigradedRegularity is correct.

i22 : B = intersect(ideal(x_(0,0), x_(0,1)), ideal(x_(1,0), x_(1,1), x_(1,2)));
o22 : Ideal of S
i23 : J = saturate(I, B);
o23 : Ideal of S
i24 : multigradedRegularity(S, S^1/J)
o24 = {{1, 4}, {2, 3}}
o24 : List

Finally, we can use this element of the multigraded regularity to compute a virtual resolution of S/J.

i25 : minres = res J;
i26 : vres = virtualOfPair(J, {{3, 5}})

1 11 18 8
o26 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4

o26 : ChainComplex

Comparing the multigraded Betti tables of these two resolutions we see that once again the virtual reso-
lution is shorter and less complicated than the graded minimal free resolution.

i27 : multigraded betti minres
0 1 2 3 4

o27 = 0: 1 . . . .
5: . a3b2+3a2b3 . . .
6: . a4b2+2a2b4+5ab5 . . .
7: . b7 3a4b3+6a3b4+12a2b5+3ab6 . .
8: . . 2ab7 3a4b4+8a3b5+6a2b6 .
9: . . . a2b7 a4b5+3a3b6

o27 : MultigradedBettiTally
i28 : multigraded betti vres

0 1 2 3
o28 = 0: 1 . . .

5: . a3b2+3a2b3 . .
6: . 2a2b4+5ab5 . .
7: . . 6a3b4+12a2b5 .
8: . . . 8a3b5

o28 : MultigradedBettiTally
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Remark 3.3. Since the curve generated by randomCurveP1P2 is, in some sense, random, one will often
get different virtual resolutions when running the above example. As an example of this phenomena,
working over a slightly larger finite field than in Example 3.1, we compute the multigraded regularity for
500 curves arising from curves of genus 3 and degree 7 in P3. The resulting distribution of multigraded
regularities is shown below.

i29 : tally apply(500,i->(
I := randomCurveP1P2(7, 3, ZZ/32003);
S := ring I;
B := intersect(ideal(x_(0,0), x_(0,1)),
ideal(x_(1,0), x_(1,1), x_(1,2)));
J := saturate(I, B);
multigradedRegularity(S, S^1/J)

))
o29 = Tally{{{1, 4}, {2, 3}} => 167}

{{1, 5}} => 170
{{1, 6}} => 163

o29 : Tally

Remark 3.4. It would be interesting to have an understanding of how the geometry of the curves in P3

affects multigraded regularity of the resulting curves in P1
×P2. For example, in the computation in

Remark 3.3, every smooth curve of genus 3 and degree 7 lies on either a smooth cubic surface or a
rational quartic surface with a double line. In fact, using the notation from [Zhang 2018], each curve of
genus 3 and degree 7 lies in one of three possible divisor classes: (4, 1, 1, 1, 1, 1, 0), (5, 3, 1, 1, 1, 1, 1),
and (6, 1, 2, 2, 2, 2, 2, 2, 2, 1), the first two being divisors on a smooth cubic surface and the last being a
divisor on a rational quartic surface with a double line. An experiment similar to the one in Remark 3.3
suggests the following relationship between divisors and multigraded regularity:

(1) The minimal elements in the multigraded regularity of any curve in P1
×P2 arising from a smooth

curve in P3 lying on smooth cubic surface in the divisor class (4, 1, 1, 1, 1, 1, 0) are {(1, 6)}.

(2) The minimal elements in the multigraded regularity of any curve in P1
×P2 arising from a smooth

curve in P3 lying on smooth cubic surface in the divisor class (5, 3, 1, 1, 1, 1, 1) are {(1, 5)}.

(3) The minimal elements in the multigraded regularity of any curve in P1
× P2 arising from a

smooth curve in P3 lying on a rational quartic surfaces with a double line in the divisor class
(6, 1, 2, 2, 2, 2, 2, 2, 2, 1) are {(1, 4), (2, 3)}.

How this generalizes to all curves though remains unclear, but we hope these functions will stimulate
others to consider this and other similar problems.

The functions randomRationalCurve and randomMonomialCurve are alternative methods for gen-
erating curves in P1

×P2. Given two positive integers d and e, these functions construct the defining
ideal of the curve arising as the image of the map

P1 P1
×P2 given by [t0 : t1] ([ f0 : f1], [g0 : g1 : g2]),

where the fi and gi are forms in K[t0, t1] of degrees d and e, respectively. For randomMonomialCurve,
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these forms are chosen to be monomials, while for randomRationalCurve they can be any possible
forms of the correct degree.

Example 3.5. Here we use the randomRationalCurve function to construct a rational curve of bide-
gree (5, 7). Once again we verify that it is, in fact, a curve by computing its dimension.

i30 : I = randomRationalCurve(5, 7);
ZZ

o30 : Ideal of ---[x , x , y , y , y ]
101 0 1 0 1 2

i31 : dim I
o31 = 3
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