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THE QUANTITATIVE BEHAVIOR OF ASYMPTOTIC SYZYGIES
FOR HIRZEBRUCH SURFACES

JULIETTE BRUCE

We study the quantitative behavior of asymptotic syzygies for certain toric surfaces, including Hirzebruch
surfaces. In particular, we show that the asymptotic linear syzygies of Hirzebruch surfaces embedded by
O(d, 2) conform to Ein, Erman, and Lazarsfeld’s normality heuristic. We also show that the higher degree
asymptotic syzygies are not asymptotically normally distributed.

In [5] Ein, Erman, and Lazarsfeld proposed a heuristic for the quantitative behavior of asymptotic
syzygies: a Betti table that is “sufficiently positive” behaves approximately like the Betti table of a large
Koszul complex. In particular, the entries of each row of such a Betti table should, after possibly rescaling,
look like a normal Gaussian distribution. The goal of this note is to consider Ein, Erman, and Lazarsfeld’s
normality heuristic for a new class of examples, namely certain toric surfaces (including Hirzebruch
surfaces) when the embedding line bundle grows in a semi-ample fashion.

Our main results are twofold, and can be visualized in the case of P1
× P1 embedded by OP1×P1(d, 2).

Below we plot the entries of the two interesting rows of the Betti table for d = 3, 5, 10, and 20.
In line with Ein, Erman, and Lazarsfeld’s normality heuristic Figure 1 shows that the first row

of these Betti tables appears to be approaching a normal distribution. Our first result says that this
behavior generalizes to all Hirzebruch surfaces, which we denote by Ft , with respect to the line bundle
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Figure 1. Entries of the first and second rows of the Betti table of P1
× P1.
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OFt (d, 2) = 2E + d F where we identify Nef(Ft) ∼= N⟨E⟩ ⊕ N⟨F⟩ with F being the fiber of the map
to P1 and E being the exceptional curve. Note the only previously known examples satisfying Ein,
Erman, and Lazarsfeld’s heuristic were smooth curves [5, Proposition A] and random monomial ideals [6,
Theorem 1.4].

Returning to Figure 1, one sees that the second row of the Betti table of P1
× P1 embedding by

OP1×P1(d, 2) looks quite dissimilar to a normal distribution. At best, the second row appears to converge
to some fraction of a normal distribution. Our second main result shows that this failure of Ein, Erman,
and Lazarsfeld’s normality heuristic occurs for the second row of all Hirzebruch surfaces embedded by
OFt (d, 2).

As far as we are aware, this is the first known set of examples where something other than Ein, Erman,
and Lazarsfeld’s heuristic describes the quantitative behavior of asymptotic syzygies. We emphasize,
however, that this is not a counterexample to [5, Conjecture B] because that conjecture assumes the
embedding line bundle grows in an ample fashion, and our examples are based on semi-ample growth.

To prove these theorems we build upon work of Lemmens who provided formulas for the graded
Betti numbers for certain toric surfaces in terms of invariants of the associated polytopes. Our key
observation is that by proving general results concerning the convergence of binomial distributions to
normal distributions we can use these formulas to examine Ein, Erman, and Lazarsfeld’s normality
heuristic.

Turning to the details, let X be a projective variety of dimension n over an arbitrary field k. Given
a sequence of very ample line bundles {Ld}d∈N, we wish to study how the graded Betti numbers of X
behave asymptotically with respect to Ld for d ≫ 0. That is, we are interested in the syzygies of the
section ring

R(X; Ld) :=

⊕
k∈Z

H 0(X, k · Ld),

as a module over S =Sym H 0(X, Ld)∼=k[x0, x1, . . . , xrd ]. Considering the graded minimal free resolution

0 R(X; Ld) F0 F1 · · · · · · Frd 0 ,

we let
K p,q(X; Ld) := spank ⟨minimal generators of Fp of degree (p + q)⟩

be the finite-dimensional k-vector space of minimal syzygies of homological degree p and degree p+q .
With this notation, Fp is isomorphic to

⊕
q K p,q(X; Ld) ⊗k S(−(p + q)). We write kp,q(X; Ld) for

dim K p,q(X; Ld), and then form the Betti table of (X; Ld) by placing kp,q(X; Ld) in the (q, p)-th spot
as shown below:

0 1 · · · · · · rd

0 k0,0 k1,0 · · · · · · krd ,0

1 k0,1 k1,1 · · · · · · krd ,1
...

...
...

...

n k0,n k1,n · · · · · · krd ,n

.

In this setup we may more precisely state Ein, Erman, and Lazarsfeld’s heuristic as follows: if {Ld}d∈N

is a sequence of line bundles growing in positivity, then for any q ∈ [1, n] there exists a function Fq(d),
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depending on X , such that if {pd}d∈N is a sequence of nonnegative integers such that

(1) lim
d→∞

(
pd −

(rd

2
+ a

√
rd

2

))
= 0,

where a ∈ R is a fixed constant, then

Fq(d) · kpd ,q(X; Ld) → e−a2/2.

Notice that the assumption that the sequence {pd}d∈N satisfies (1) is crucial. In particular, this change of
coordinates is necessary for binomial distributions to converge to normal distributions. As we will use it
frequently, we take the time to label it here.

Assumption. We say that a sequence {pd}d∈N satisfies assumption ⋆ if, for some real number a ∈ R,

lim
d→∞

(
pd −

(rd

2
+ a

√
rd

2

))
= 0. ⋆

We now state our main results concerning Ein, Erman, and Lazarsfeld’s normality heuristic for
Hirzebruch surfaces, which we denote by Ft , embedded by the line bundle OFt (d, 2).

Theorem A. If {pd}d∈N is a sequence of nonnegative integers satisfying ⋆, then

3
√

2π

2rd
√

rd
· kpd ,1(Ft , OFt (d, 2)) = e−a2/2

(
1 + O

(
1

√
rd

))
.

Theorem B. There does not exist a function F2(d) such that if {pd}d∈N is a sequence of nonnegative
integers satisfying ⋆, then

F2(d) · kpd ,2(Ft , OFt (d, 2)) = e−a2/2
(

1 + O
(

1
√

rd

))
.

Notice that in this setting we are considering a slightly weaker positivity condition than was initially
considered in [5, Conjecture B]. In particular, the embedding line bundle is not growing in an ample
fashion, but instead in a semi-ample fashion. This failure of Ein, Erman, and Lazarsfeld’s heuristic when
q = 2 is likely related to the fact that the nonvanishing of asymptotic syzygies in the setting of semi-ample
growth is quite nuanced. See for example [1], where the author shows that the nonvanishing of asymptotic
syzygies for products of projective spaces is not necessarily described by the nonvanishing theorems of
Ein and Lazarsfeld [4].

The note is structured as follows: In Section 1 we study the asymptotic distribution of graded Betti
numbers for a family of toric surfaces. Section 1 also includes the proofs of Theorems A and B. Section 2
contains technical results used in the proofs in Section 1.

1. Asymptotic normality for certain toric surfaces

In this section we consider Ein, Erman, and Lazarsfeld’s normality heuristic for certain toric surfaces, and
prove slight generalizations of Theorems A and B. Specifically we consider the toric surface Xδ whose
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associated normal fan 6δ ⊂ R2 has four cones given by the rays {(1, 0), (0, 1), (0, −1), (−2, δ)}, where
δ ∈ N.

ρ1

ρ2

ρ3

ρ4

(−2, δ)

When δ is even, Xδ is isomorphic to the Hirzebruch surface Fδ/2. However, when δ is odd, Xδ is
singular, with two Z/2Z-singularities [2, Proposition 10.1.2].

For each ray ρ1, ρ2, ρ3, ρ4, there is a corresponding prime torus invariant divisor Dρ1, Dρ2, Dρ3, Dρ4 ,
which may be thought of as the irreducible components of Xδ \ T , where T ⊂ Xδ is the torus. When
δ is even, so that Xδ

∼= Fδ/2, these divisors are related to the generators of Nef(Fδ/2) described in the
introduction as follows: Dρ1 ∼ Dρ3 ∼ F , Dρ2 ∼ E + (δ/2)F , and Dρ4 ∼ E . In particular, Nef(Fδ/2) is
generated by Dρ1 and Dρ2 .

We are interested in the syzygies of Xδ with respect to the divisor Ld = d Dρ1 + 2Dρ2 when δ is even
and Ld = 2d Dρ1 + 2Dρ2 when δ is odd. The corresponding polytope for these divisors is

1d = conv{(0, 0), (d, 0), (0, 2), (d + δ, 2)}.

For example, if δ = 3 and d = 2 then 1d is the polytope below:

Throughout the remainder of the paper, we write nd for #(1d ∩ Z2) and n(1)
d for #(int(1d) ∩ Z2). For

d ≥ 1 the divisor Ld is very ample and defines an embedding Xδ → PH 0(Ld) ∼= Prd where rd = nd − 1.
A straightforward argument using Pick’s theorem shows that

rd = 3d+Cδ and n(1)
d =

1
3rd +Eδ, where Cδ :=

3
2δ+

1
2 gcd(δ, 2)+1 and Eδ :=

1
3 gcd(δ, 2)− 1

3 .

We now prove analogues of Theorems A and B for (Xδ; Ld). As Xδ is isomorphic to Fδ/2 when δ is
even, Theorems A and B follow from these slightly more general theorems about (Xδ; Ld).

First, we show that Ein, Erman, and Lazarsfeld’s normality heuristic accurately describes the quantitative
behavior of the asymptotic linear syzygies of (Xδ; Ld).

Theorem 1. Set F1(d) =
3
√

2π

2rd
√

rd
. If {pd}d∈N is a sequence of nonnegative integers satisfying ⋆ then

F1(d) · kpd ,1(Xδ; Ld) = e−a2/2
(

1 + O
(

1
√

rd

))
.
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Proof. Using [9, Corollary 5] together with the fact that nd = rd + 1 and n(1)
d =

1
3rd + Eδ, we know that

kpd ,1(Xδ; Ld) = max
{

pd −
2
3rd + Eδ + 1, 0

}( rd −2
pd −1

)
+ pd

( rd
pd +1

)
−

( 4
3rd + Eδ − 1

)( rd −2
pd −1

)
.

By assumption ⋆, we may replace pd with 1
2rd +

1
2a

√
rd , giving

(2) F1(d) · kpd ,1(Xδ; Ld)

∼ F1(d)

(
max

{
−

rd

6
+a

√
rd

2
+Eδ+1, 0

}( rd −2
pd −1

)
+

(
rd

2
+a

√
rd

2

)( rd
pd +1

)
−

( 4
3rd +Eδ−1

)( rd −2
pd −1

))
.

Proposition 3 implies that for any constants c1, c2 ∈ Z and c3 ∈ R both F1(d) · a
√

rd
2 ·

(rd+c1
pd+c2

)
and

F1(d) · c3 ·
(rd+c1

pd+c2

)
tend to zero as d → ∞. Hence we may ignore these terms in the above line, and

rewrite (2) as

F1(d) · kpd ,1(Xδ; Ld) ∼ F1(d) ·

(
max

{
−

rd
6 , 0

}( rd −2
pd −1

)
+

rd

2

( rd
pd +1

)
−

4
3

rd

(rd −2
pd

))
∼

3
√

2πrd

2rd+1

( rd
pd +1

)
−

8
√

2πrd

2rd+1

( rd −2
pd −1

)
.

The result now follows directly from Proposition 3. □

Our second theorem in this section shows that the higher degree asymptotic syzygies of (Xδ; Ld) do
not behave as suggested by Ein, Erman, and Lazarsfeld’s normality heuristic. In particular, the entries in
the q = 2 row of the Betti table of (Xδ; Ld) do not converge to a normal distribution as d → ∞.

Theorem 2. There does not exist a function F2(d) such that if {pd}d∈N is a sequence of nonnegative
integers satisfying ⋆ then

F2(d) · kpd ,2(Xδ; Ld) = e−a2/2(1 + O(1/
√

rd)).

Proof. Similar to the proof of Theorem 1, by using [9, Corollary 5], the fact that nd = rd + 1 and
n(1)

d =
1
3rd + Eδ, and assumption ⋆ we see that

kpd ,2(Xδ; Ld) = max
{
−rd

6
+ a

√
rd

2
+ Eδ + 2, 0

}(rd −2
pd

)
.

However, −rd
6 + a

√
rd
2 + Eδ + 3 < 0 for d ≫ 0, and so for any function F2(d) we have that

F2(d) · kpd ,2(Xδ; Ld) = F2(d) · max
{
−rd

6
+ a

√
rd

2
+ Eδ + 3, 0

}(rd −2
pd

)
= 0. □

Remark. Theorems 1 and 2 only depend on the values of kp,q(Xδ; Ld) for p in a neighborhood of 1
2rd ,

and hence are related in part to the study of Green’s Np-property [10; 8]. In particular, both theorems may
also be deduced from Schenck’s work showing that kp,2(Xδ; Ld) = 0 for all p ≤ #(∂1d ∩ Z2) − 3 [10,
Corollary 2.1]. Since in the cases we are considering 1d is height two, #(∂1d ∩ Z2) is relatively large
compared to 1

2rd . Using this one can deduce Theorem 2. One may then deduce Theorem 1 by noting that
this vanishing implies that kp,1(Xδ; Ld) for p around 1

2rd can be deduced from the Hilbert function of
R(Xδ; Ld). We thank the referee for pointing out this alternative argument.
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2. Technical results

Here we gather a series of technical results crucial to the proofs of our main theorems. The key result
of this section is the following special case of the local central limit theorem. While standard in many
probability texts, see [3, Theorem 3.5.3], we take the time to prove it as this version of the local de
Moivre–Laplace theorem, with precise constants and error terms, is crucial to proving our main theorems.

Proposition 3. Suppose {rd}d∈N is a sequence such that rd → ∞ as d → ∞. If there exists a sequence
{pd}d∈N of nonnegative integers satisfying ⋆ then, for any constants c1, c2 ∈ Z,

√
2πrd

2rd+1

( rd +c1
pd +c2

)
= 2c1e−a2/2(1 + O(1/

√
rd)

)
.

Before proving this proposition we need a lemma.

Lemma 4. Suppose {rd}d∈N is a sequence such that rd → ∞ as d → ∞. For any a ∈ R,

(3)
(

rd

rd + a
√

rd

)rd/2+a
√

rd/2( rd

rd − a
√

rd

)rd/2−a
√

rd/2

= e−a2/2(1 + O(1/
√

rd)
)
.

Proof. Let Q denote the left-hand side of (3). We have

(4) −log Q =
rd + a

√
rd

2
log

(
1 +

a
√

rd

)
+

rd − a
√

rd

2
log

(
1 −

a
√

rd

)
.

Using the Taylor expansion of log(1 + x) the right-hand side of (4) may be rewritten as

(5)
rd + a

√
rd

2

(
a

√
rd

−
a2

2rd
+ O(r−3/2

d )

)
+

rd − a
√

rd

2

(
−

a
√

rd
−

a2

2rd
− O(r−3/2

d )

)
.

Simplifying (5) and combining it with (4) shows that

(6) log Q = −
a2

2
+ O

(
1/

√
rd

)
.

The result now follows by exponentiating both sides □

Proof of Proposition 3. Throughout the proof we write c̃ for c1 −c2. A straightforward computation shows
that O(rd), O(rd + c1), O(pd + c2) and O(rd − pd + c̃) are all equal, and so we will not distinguish
between them. Using Stirling’s formula for n! we see that

(7)
√

2πrd

2rd+1

( rd +c1
pd +c2

)
= 2−(rd+1)

√
r2

d +c1rd

(pd +c2)(rd − pd +c̃)

×

(
rd +c1

pd +c2

)c2
(

rd +c1

rd − pd +c̃

)c̃( rd +c1

pd +c2

)pd
(

rd +c1

rd − pd +c̃

)rd−pd (
1+O(1/rd)

)
.

Since c1 and c2 are constants and rd and pd tend to infinity as d → ∞, using assumption ⋆ one can
show that

lim
d→∞

(
rd + c1

pd + c2

)c2

= 2c2, lim
d→∞

(
rd + c1

rd − pd + c̃

)c̃

= 2c̃, lim
d→∞

r2
d

rd pd − p2
d

= 4.
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Using these limits, we see that (7) can be simplified to

(8)
√

2πrd

2rd+1

( rd +c1
pd +c2

)
= 2−rd 2c1

(
rd + c1

pd + c2

)pd
(

rd + c1

rd − pd + c̃

)rd−pd (
1 + O(1/rd)

)
.

Now we show that we can reduce to the case when c1 = c2 = c̃ = 0. Towards this, notice that by the
assumption ⋆, we know that rd − pd tends to infinity as d → ∞. Combining this with the fact that rd

and pd also tend to infinity as d → ∞, we see that

lim
d→∞

( rd
pd

)pd
( rd

rd − pd

)rd−pd

( rd +c1
pd +c2

)pd
( rd +c1

rd − pd +c̃

)rd−pd
= lim

d→∞

[(
pd + c2

pd

rd

rd + c1

)pd
(

rd

rd + c1

rd − pd + c̃
rd − pd

)rd−pd
]

= lim
d→∞

(
1 +

c2

pd

)pd
(

1 −
c1

rd + c1

)rd
(

1 +
c̃

rd − pd

)rd−pd

= ec2 · e−c1 · ec̃
= 1.

Thus we may rewrite (8) as

(9)
√

2πrd

2rd+1

( rd +c1
pd +c2

)
= 2−rd 2c1

(
rd

pd

)pd
(

rd

rd − pd

)rd−pd (
1 + O(1/rd)

)
.

Assumption ⋆ allows us to substitute rd

2
+

a
√

rd

2
everywhere we see pd in (9). Doing this gives

(10)
√

2πrd

2rd+1

( rd +c1
pd +c2

)
= 2c1

(
rd

rd + a
√

rd

)rd/2+a
√

rd/2( rd

rd − a
√

rd

)rd/2−a
√

rd/2(
1 + O(1/d)

)
,

from which the result follows using Lemma 4. □
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