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1. Introduction

While syzygies are a much-studied topic in algebraic geometry and commutative al-
gebra, the Betti tables for varieties of dimension ≥ 2 remain largely mysterious. For 
instance, the Betti table of P 2 under the d-uple Veronese embedding is only fully un-
derstood for d ≤ 6 [9,10], and there is not yet even a conjectural picture for the values 
of such Betti tables. One obstacle to developing such a conjecture is a lack of data: for 
the d-uple embedding of P 2, the required number of variables grows like d2, and so free 
resolution computations tend to overflow memory.

In [9], the computation of syzygies was approached via an alternate method. Instead 
of using symbolic Gröbner basis methods to compute a minimal free resolution, we 
computed the Betti numbers via the cohomology of the Koszul complex. In essence, this 
swapped a symbolic computation for a massive linear algebra computation. (See §2 for 
the theoretical background on this approach.) This reduced the computation to a number 
of individual rank computations, one for each multigraded Betti number, and then we 
performed those computations using high-throughput computations.

The present work has three foci: we improve the framework for this alternate approach 
to Betti numbers; we apply it to the case of P 1×P 1 to generate a wealth of new data; and 
we use that data to offer new conjectures and questions about the syzygies of P 1 × P 1.

1.1. Overview of the computation

For any d = (d1, d2) ∈ Z2
>0, we can embed ιd : P 1 × P 1 → P (d1+1)(d2+1)−1 by the 

complete linear series for OP1×P1(d), and we want to understand the syzygies of this 
image. Following a philosophy implicit in Green’s foundational work on syzygies [33], 
and echoed in later results on asymptotic syzygies [12,14], we will study the syzygies 
of not only the structure sheaf, but also of the pushforward of various line bundles. In 
particular, our goal is to compute the syzygies of ιd∗OP1×P1(b) for as many choices of 
d and b as possible. Note very few cases were previously known [8,35]

Depending on the grading group or equivariant structure under consideration, we can 
represent these Betti numbers in a multitude of ways. See §2 for a summary of notation.

Our main computation involves the Z4-graded Betti numbers. There are ≈ d1d2 entries 
of the Betti table which could be nonzero, and each of those entries will involve at most 
≈ d3

1d
3
2 distinct Z4 multidegrees. However, by using known vanishing and duality results, 

accounting for symmetry, and applying elementary results on the relationship between 
Betti numbers and Hilbert function, we can shrink down to a much smaller number of 
matrices, which we refer to as the relevant range, and which are sufficient to determine 
all of the Betti numbers. (See §4 for details on the relevant range.)

The main computation involves computing the ranks of all of the matrices from the 
relevant range. The rank of each matrix can be computed in parallel, allowing us to 
leverage high throughput computational resources. In addition, some of the matrices 
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Fig. 1. Memory vs. time to compute ranks of matrices for b = (2, 2), d = (3, 8).

Method Average time per job (secs) Max time (secs)
MatLab LU-algorithm over R 220 4735

MAGMA rank algorithm over F32003 7 99

Fig. 2. We compared floating-point LU-algorithm computations in MatLab with rank computations in 
MAGMA over the finite field F32003, for all of the multigraded matrices related to one individual Betti 
number. This anecdotally suggests that MAGMA computations over finite fields are significantly faster, 
though we did not do any comprehensive testing.

are quite massive, and we thus require huge amounts of memory for those particular 
matrices.

For concreteness, let us consider our largest complete computation, which is the case 
b = (2, 2) and d = (3, 8). The relevant range involves 1130 matrices, the largest of which 
is 2, 124, 896 × 3, 719, 448, and Fig. 1 provides a scatterplot of the time and memory 
involved in computing the ranks of those matrices. Only a handful of cases took over a 
day.

1.2. Computational improvements

Our current work improves on the method of [9] in a number of ways. Most notably, 
[9] relied on floating-point rank computations of sparse real matrices, using a MATLAB 
implementation of the LU-algorithm; by contrast, our current work simply performs 
the computations over finite fields in MAGMA. MAGMA recently introduced major 
improvements in their linear algebra of finite fields [40], which seemed to make these 
rank computations much faster than our previous method; see Fig. 2.

Moreover, this switch to working over finite fields enabled us to use exact calculations, 
eliminating the need for floating-point approximations. While an exact computation over 
a finite field will not necessarily agree with the exact computation over Q, there are only 
finitely many primes where the computations could disagree, and these discrepancies 
seem to rarely arise for reasonably large primes. This switch to working over finite 
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Fig. 3. Here we plot the Betti numbers of the first row of the Betti tables of P1 × P1 embedded by (d, 3), 
for d = 3, 4 and 5. They appear to resemble a normal distribution, as predicted by a conjecture of [13].

fields thus had a significant downstream effect: the main computations in [9] introduced 
some numerical errors as d grew larger, requiring the use of representation theoretic 
techniques to detect these errors. By contrast, our finite field computations produced 
no such numerical errors, and we were able to produce Schur functor decompositions 
without the need for the sort of “error correction” from [9, §5].

1.3. New data

After computing the multigraded ranks for the relevant range, we process the data into 
usable formats. The rank computations quickly yield Z4-multigraded Betti numbers, but 
most mathematical conjectures focus on either the standard Z-graded Betti numbers or 
on the underlying GL2×GL2-Schur modules. We convert into those formats and encode 
all of the results into a Macaulay2 package for ease of use. A preliminary version of this 
package is available at:

https://github .com /julietteBruce /P1P1syzygies/

In total, we compute complete Betti tables for just shy of 200 total pairs of b and d. 
See §3 and Table 1 for more details on the data.

1.4. Conjectures

Based on the data we computed, we develop a number of new conjectures, and we 
provided evidence in support of some previous conjectures.

We first examine the quantitative behavior of the standard grade Betti numbers, with 
conjectures in §5 that address unimodality properties of the Betti numbers and various 
statistics. In addition, we consider our data in relation to a conjecture of Ein, Erman, 
and Lazarsfeld that, for large values of d, the Betti numbers in any given row of the 
Betti table should behave like a binomial distribution [13, Conjecture B]. A theorem 
of Bruce [7, Theorem A] implies that the first row of the Betti table for P 1 × P 1 and 
line bundles (2, d2) satisfies exactly this behavior as d2 → ∞. Our data provide further
support for the normal distribution behavior suggested by the conjecture, and seems to 
show this behavior even for the low values of d2 for which we have data. See Fig. 3.

In §6, we consider several conjectures related to the GL2 × GL2 structure of these 
syzygies. This includes precise conjectures on the Schur functor decomposition of certain 

https://github.com/julietteBruce/P1P1syzygies/
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entries; an analysis of the shapes of partitions that arise; and a discussion of “redundant” 
representations.

In §7, we present a collection of conjectures involving the Boij-Söderberg decomposi-
tions of these Betti tables. In particular, we provide a complete conjectural description of 
the Boij-Söderberg coefficients of the homogeneous coordinate ring of P 1×P 1 embedded 
by OP1×P1(2, d2)

Acknowledgments

We thank Erika Pirnes for her contributions to early versions of some of our code. We 
thank UW-Madison Math Department, Center for High Throughput Computing, John 
Canoon, Claudiu Raicu, Greg Smith, and Allan Steel. The first author is grateful for the 
support of the Mathematical Sciences Research Institute in Berkeley, California, where 
she was in residence for the 2020–2021 academic year. The computer algebra systems 
Magma and Macaulay2 provided valuable assistance throughout our work [36,37].

2. Background and notation

Throughout this section, we work over an arbitrary field K. Our convention will be 
to write integer vectors using boldface, as in d ∈ Z2, and to specify the coordinates as 
d = (d1, d2). We let 0 = (0, 0) ∈ Z2.

As we are interested in the syzygies of P 1×P 1 throughout we let S = K[x0, x1, y0, y1]
be the corresponding polynomial of over a field K. When viewed as the Cox ring of 
P 1 × P 1 [11], the ring S inherits a Z2-bigrading given by deg x0 = deg x1 = (1, 0) ∈ Z2

and deg y0 = deg y1 = (0, 1) ∈ Z2. The ring S also admits a Z4-multigrading given by 
setting the degree of each variable to be a generator of Z4, e.g. deg(x0) = (1, 0, 0, 0) and 
deg(x1) = (0, 1, 0, 0) and so on.

2.1. Standard graded Betti numbers

The syzygies of P 1×P 1 under various embeddings come from studying Segre-Veronese 
modules of S. Given d ∈ Z2

>0 and b ∈ Z2 the Segre-Veronese module is

S(b;d) :=
⊕
k∈Z

Skd+b.

Since kd + b determines a ray in Z2 as k varies in Z, S(b; d) is naturally a Z-graded 
module over the polynomial R = SymSd. When b = 0 the module S(0; d) is isomor-
phic to the homogeneous coordinate ring of P 1 × P 1 embedded by OP1×P1(d) into the 
projective space P (d1+1)(d2+1)−1 = ProjR. If b �= 0, then S(b; d) is naturally isomor-
phic to the section module of a pushforward of a line bundle; specifically, S(b; d) is the 
R-module associated to the sheaf (ιd)∗OP1×P1(b). As noted in the introduction, while 
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our primary interest is in the syzygies of the homogeneous coordinate rings S(0; d), past 
work shows that studying the syzygies of other line bundles is often helpful in providing 
a more uniform picture [12,14,33].

The Betti numbers of a graded R-module M are defined as βi,j(M) =
dimK TorRi (M, K)j , which denotes the degree j part of the Tori-module. For conve-
nience, when studying the Betti numbers S(b; d), we will omit reference to the ambient 
polynomial ring R, and write βi,j(S(b; d)) = βi,j(P 1×P 1, b; d). The Betti numbers of a 
graded module are often computed using a minimal free resolution [15,36]. However, an 
alternate characterization of the Betti numbers, via Koszul cohomology, is more relevant 
for our computational approach.

The Koszul complex of S(b; d) over the ring R is the complex:

· · ·
∧1

R(b1+1)(b2+1) ⊗ S(b;d)
∧0

R(b1+1)(b2+1) ⊗ S(b;d),

which is naturally Z-graded since R is Z-graded. Given a pair of integers (p, q), we can 
analyze the cohomology of the degree p +q strand of this complex, in homological degree 
p. This will be denoted by Kp,q(P 1 × P 1, b; d).1 It can be computed explicitly as the 
middle cohomology of the following complex:

· · ·
∧p+1

Sd ⊗ S(q−1)d+b
∧p

Sd ⊗ Sqd+b
∧p−1

Sd ⊗ S(q+1)d+b · · ·∂p+1,q−1 ∂p,q

(2.1)
where the differentials are given by

∂p+1,q−1 (m0 ∧m1 ∧ · · · ∧mp ⊗ f) =
p∑

i=0
(−1)im0 ∧m1 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif

∂p,q (m1 ∧m2 ∧ · · · ∧mp ⊗ f) =
p∑

i=1
(−1)im1 ∧m2 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif.

In other words, instead of computing all of the Betti numbers simultaneously via a min-
imal free resolution, we can compute each Betti number individually using the complex 
of vector spaces in (2.1). This, in essence, turns a problem of symbolic algebra into a 
(massive but largely distributable) problem in linear algebra.

2.2. Multigraded Betti numbers

By incorporating the Z4-grading on S, we can subdivide the problem even further 
and obtain the Z4-graded Betti numbers. For a multidegree e ∈ Z4, we define βi,e(P 1 ×

1 We remark that Kp,q and βi,j provide two different notations for similar invariants, though Kp,q is a 
vector space whereas βi,j is an integer; both are commonly used in the literature. We will primarily use the 
Kp,q-notation, however the conversion between the two notations is given by the simple rule dimKp,q ↔
βp,p+q.
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P 1, b; d) = βi,e(S(b; d)) = dimK TorRi (S(b; d), K)e. This is well defined because both R
and S(b; d) inherit Z4-multigradings from S. From the Koszul cohomology perspective, 
the Koszul complex of S(b; d) over R is also homogeneous with respect to the Z4-grading. 
Thus, we can analyze the cohomology of the degree e-strand, which provides our method 
for computing βi,e(P 1 × P 1, b; d).

2.3. Schur functor decomposition

The action of GL2 ×GL2 on P 1 ×P 1 turns the vector space Kp,q(P 1 ×P 1, b; d) into 
a GL2 × GL2-representation. We can therefore decompose Kp,q(P 1 × P 1, b; d) into a 
direct sum of irreducible GL2 ×GL2-representations. These irreducible representations 
have the form Sλ⊗Sμ, where λ, μ are partitions with length ≤ 2. See [29, Exercise 2.36]
for background. For brevity, we write S(a,b,c,d) for the Schur module S(a,b) ⊗ S(c,d).

Example 2.2. Let b = (2, 2) and d = (3, 3). The Betti table for S(b; d) is

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 : 9 108 585 1872 3861 5148 4026 1080 165 · · · · ·
1 : · · · · · 165 1080 4026 5148 3861 1872 585 108 9

The bold entry in the Betti table tells us that dimK8,0(P 1 × P 1, b; d) = β8,8(P 1 ×
P 1, b; d) = 165. Viewed as GL2 ×GL2-representation, K8,0(P 1 × P 1, b; d) decomposes 
as

K8,0(P 1×P 1,b;d) ∼= S(17,9,17,9)⊕S(16,10,16,10)⊕S(15,11,15,11)⊕S(14,12,14,12)⊕S(13,13,13,13).

The dimensions of these Schur modules are 81, 49, 25, 9 and 1, respectively.

2.4. Koszul duality

Using duality of Koszul cohomology groups (see, for instance [32, Duality Theorem 
(2.c.9)]), we can derive data for more values of b and d, as we now explain. Given b we 
define its Koszul dual as b′ := d − b − (2, 2). We have

Kp,q(P 1 × P 1,b′;d) ∼= K(d1+1)(d2+1)−3−p,2−q(P 1 × P 1,b;d)

as vector spaces. Visually, this means that the Betti table for (b′; d) is obtained by rotat-
ing the Betti table for (b; d) by 180◦. We will illustrate this phenomenon in Example 2.3. 
Note that (d1 + 1)(d2 + 1) − 3 is the codimension of P 1 × P 1 in the embedding by d. 
The duality also applies to the Schur functor decomposition via the following formula. 
To phrase this, we need some more notation. Let

α :=
(

(d1+1)(d2+1)d1−2 , (d1+1)(d2+1)d1−2 , (d1+1)(d2+1)d2−2 , (d1+1)(d2+1)d2−2
)
.
2 2 2 2
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Given any w = (w0, w1, w2, w3) ∈ Z4 we write wopp = (w1, w0, w3, w2) and we choose 
w′ so that w + (w′)opp = α. The multiplicity of the Schur functor Sw in Kp,q(b; d)
equals the multiplicity of the Schur functor Sw′ in the dual Koszul cohomology group 
K(d1+1)(d2+1)−3−p,2−q(P 1 × P 1, b′; d), where b′ is defined as above.

Example 2.3. Let b = (0, 0) and d = (3, 3). The Betti table for S(b; d) is

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 : 1 · · · · · · · · · · · · ·
1 : · 87 676 2691 6864 12155 15444 14157 9152 3861 780 22 · ·
2 : · · · · · · · · · · 165 144 39 4

The bold entry in the Betti table tells us that dimK11,1(P 1 × P 1, b; d) = β11,12(P 1 ×
P 1, b; d) = 22. Viewed as GL2 × GL2-representation, K11,1(P 1 × P 1, b; d) decomposes 
as

K11,1(P 1 × P 1,b;d) ∼= S(23,13,18,18) ⊕ S(18,18,23,13).

The Koszul dual pair to (b; d) is b′ = (1, 1) and d′ = (3, 3). The Betti table for 
S(b′; d′) is

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 : 4 39 144 165 · · · · · · · · · ·
1 : · · 22 780 3861 9152 14157 15444 12155 6864 2691 676 87 ·
2 : · · · · · · · · · · · · · 1

We see that this Betti table is exactly that corresponding to S(b; d) rotated by 180◦. 
The (11, 1) entry for S(b; d) corresponds to (2, 1) for S(b′; d′). Viewed as GL2 ×GL2-
representation, K2,1(P 1 × P 1, b; d) decomposes as

K2,1(P 1 × P 1,b;d) ∼= S(10,0,5,5) ⊕ S(5,5,10,0)

3. Computed data

Using the algorithms outlined in Section 4 we computed the Betti tables, Z4-
multigraded Betti numbers, and Schur functor decompositions for over 150 distinct pairs 
(b; d), including 27 distinct d-values. In Table 1, we list, for each d, the number of 
b’s for which we have complete data. For comparison: [9] computed similar data for P 2

for about 15 distinct pairs (b; d), which included 5 distinct b values; and [10], which 
only considered the case b = 0, computed data for P 2 for 5 distinct d values. There 
appears to be no significant computational work on syzygies for P 1 × P 1, although [35]
does construct a non-minimal resolution. In other words, these computations represent 
a significant contribution to the available syzygy data for P 1 ×P 1 specifically, as well as 
for toric surfaces more generally.
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Table 1
For each d, the number of b for which we compute the Betti tables, Z4-multigraded Betti numbers, and 
Schur decompositions.

d2

2 3 4 5 6 7 8 9 10
2 3 6 8 10 12 14 13 6 6

d1 3 · 6 12 15 13 12 8 4 2
4 · · 9 14 9 5 1 1 0
5 · · · 1 1 1 1 0 0

Remark 3.1. In Table 1, for the symmetric cases d = (d, d), we only record b = (b1, b2)
with b1 ≤ b2 for which we have data. For example, when d = (2, 2), we only count the 
cases b = (0, 0), (0, 1), and (1, 1); we do not include (1, 0).

4. Main computation

Broadly speaking, our approach to computing the Betti table, Z4-multigraded Betti 
numbers, and Schur functor decompositions for a given pair (b; d) proceeds as follows:

(1) Reduction to the relevant range: By combining a computation of the multigraded 
Hilbert series with known vanishing results for syzygies (relying primarily on 
Castelnuovo-Mumford regularity), we conclude that a small subset of the Betti num-
bers determines all of the Betti numbers. This smaller subset is the relevant range, 
and is the focus of our computations.

(2) Constructing the matrices in the relevant range: We follow the ideas in [9] to effi-
ciently construct and store the matrices from the relevant range.

(3) High throughput rank computations: We use distributed high throughput computa-
tion to find the ranks of all the matrices in the relevant range. These computations 
are done via linear algebra over the finite field F32003 in MAGMA. This is by far the 
most computationally intensive aspect.

(4) Post-processing: Using standard ideas from representation theory, we convert the 
multigraded Betti number into Schur functor decompositions.

While the techniques here are broadly similar to those in [9], which focused on com-
puting syzygies of Veronese embeddings of P 2, the passage from P 2 to P 1 ×P 1 requires 
new code in each step and we further refine this implementation and approach. The most 
significant distinction is in the third step abvoe: the core algorithm in the current work 
uses linear algebra over finite fields, whereas in [9] it used floating-point computations.

4.1. Relevant range

We expedite our computations significantly by utilizing the fact that for many values 
of p and many multidegrees a, the multigraded Betti number βp,a(P 1 × P 1, b; d) is 
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determined entirely by the Z4-multigraded Hilbert series of S(b; d). In the following 
lemma, we use vector notation ta := ta0

0 ta1
1 ta2

2 ta3
3 if a = (a0, a1, a2, a3).

Lemma 4.1. The Z4-multigraded Hilbert series of S(b; d) is a rational function of the 
form: A(t0, t1, t2, t3)/B(t0, t1, t2, t3) where

A =
∑
p,a

βp,a(P 1 × P 1,b;d)ta and B =
∏

b∈N4,b0+b1=d1,b2+b3=d2

(1 − tb)

The proof is nearly identical to that of [9, Lemma 3.1], so we omit it.
With this in mind, our main computations reduce to determining the ranks ∂p,q for 

p, q in what we call the relevant range.

Definition 4.2. Fixing b and d we define the relevant range to be the set of pairs (p, q) such 
that Kp,q(P 1 × P 1, b; d) �= 0 and either Kp−1,q+1(P 1 × P 1, b; d) �= 0 or Kp+1,q−1(P 1 ×
P 1, b; d) �= 0.

In general we determine the relevant range by finding the smallest p such that 
Kp,q(P 1 × P 1, b; d) �= 0 and then applying duality (see [12, Proposition 3.5]). When 
b = 0 the only case of interest is q = 1, and we find the smallest p such that 
Kp,1(P 1 × P 1, 0; d) �= 0 via [10, Theorem 1.4]. When b �= 0 we determine the rele-
vant range using the fairly coarse vanishing bounds from [12, Proposition 5.1]. While a 
sharper bound on the relevant range would allow us to compute ranks for many fewer 
matrices, we found that in practice, these potentially extraneous matrices did not cause 
any bottlenecks in the actual computation.

An algorithm entirely analogous to [9, Algorithm 3.3] enables us to efficiently compute 
the multigraded Betti numbers outside of the relevant range.

4.2. Constructing the matrices in the relevant range

After computing the relevant range and the relevant multidegrees, this data is fed to 
the code to compute the matrices representing the differentials in the relevant range. We 
first use the S2 × S2-symmetries of the multidegrees to restrict to those multidegrees 
(a, b, c, d) where a ≥ b and c ≥ d. As in [9] we use duality for Koszul cohomology groups 
to reduce the number of matrices we compute [32, Theorem 2.c.6]. Unfortunately unlike 
in the case of the Veronese, the bi-graded structure means that it is not possible to use 
this duality to reduce to a finite set of non-redundant Betti tables.

When constructing the matrices, we use the fact that all of the maps (∂p,q)a correspond 
to submatrices of the boundary map dp :

∧p
Sd →

∧p−1
Sd. In particular, (∂p,q)a is given 

by restricting to the submatrix dp,≤a given by those entries in degrees ≤ a. However, 
instead of storing the map dp we simply use this fact to compute all of the various (∂p,q)a
for all multidegrees at once. This was implemented as it was found that as the degrees 
got larger, more of the entries in the dp matrix correspond to multidegrees that are not in 



JID:YJABR AID:18318 /FLA [m1L; v1.310] P.11 (1-33)
J. Bruce et al. / Journal of Algebra ••• (••••) •••–••• 11
the relevant range. This is entirely analogous to [9, §4.1], which provides further details. 
In Appendix A, we list the number of matrices we must compute and the largest such 
matrix.

Example 4.3. For d = (3, 8), b = (2, 2), the full computation of which is discussed in 
more detail in Example 4.4, it took a modern laptop computer, 5 min 25 sec to compute 
all the relevant matrices, entailing a total of 1130 matrices, taking a total of 13 GB of 
space. The single largest matrix had 16,999,168 non-zero entries.

4.3. High throughput computations

The rank computations can be efficiently distributed over numerous different comput-
ers. We implemented these computations using high throughput computing via HTCon-
dor on the University of Wisconsin–Madison Mathematics department computer servers. 
Many of the matrices are small, and hence do not require much memory to compute the 
rank. Because our hardware grid has fewer nodes with large amounts of available RAM, 
the initial submissions are allocated a small amount of RAM (e.g. 2 GB). For the jobs 
that fail, we resubmit with a larger memory allocation, and repeat this process until the 
computation terminates.

Example 4.4. In this example, we provide a detailed analysis of how we determine the 
Betti table for d = (3, 8) and b = (2, 2), one of our larger computations. There are only 
two rows q = 0, 1, and 34 columns; we display the first several columns below.

0 1 2 3 4 5 6 7 8 9
0 : 9 258 3465 28512 156546 568620 1210506 697680 203490 ·
1 : · · · 1050 28476 498498 5444400 41855958 194378184 671067540

· · ·

The relevant range is (p, 0) for 4 ≤ p ≤ 8 and (p, 1) for 3 ≤ p ≤ 7. Because Kp,0−Kp−1,1
is determined by the Hilbert function of the module, we need only compute one of Kp,0
or Kp−1,1, and we compute the former. To that end, we form the matrices (∂p,0)a and 
(∂p+1,−1)a for 4 ≤ p ≤ 8 and compute their ranks. Fortunately, (∂p+1,−1)a = 0. After 
accounting for S2 × S2-symmetry, we are left to compute ranks of 1130 matrices, the 
largest of which is 2, 124, 896 × 3, 719, 448. In this case, up to symmetry there were 39788 
multidegrees with non-zero entries in the Betti table. For these entries, in absence of the 
consideration about relevant ranges, to compute these entries would have required the 
computation of at least 81, 437 matrices.

The amount of RAM and time used in the rank calculation is recorded in Fig. 1. The 
vast majority of matrices require less than 1 MB of RAM and 10 seconds. Fig. 4 has two 
plots displaying the average and maximum memory, resp. time, needed to compute the 
ranks of the matrices (∂p,0)a as a function of p.

Fig. 5 illustrates how memory usage varies with multidegree for each (p, 0). The plots 
are arranged left to right (p, q) = (4, 0) through (8, 0). Here is how to interpret these 
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Fig. 4. Memory and time to compute ranks of matrices for b = (2, 2), d = (3, 8) and q = 0.

Fig. 5. Memory usage to compute ranks for each multidegree for b = (2, 2), d = (3, 8). Plots are arranged 
left to right (p, q) = (4, 0) through (8, 0).

plots. Within each plot, each square represents a multidegree, and its color measures the 
memory usage: light gray is 0 GB and black reaches the maximum of 132 GB of RAM. 
Because of the S2 × S2-symmetry, we need only consider the multidegrees (a, b, c, d)
satisfying a + b = 26, a ≤ b and c + d = 66, c ≤ d. Each row has (a, b) constant, each 
column has (c, d) constant, and a, resp. c, increases in the downward, resp. left, direction.

Here are some take-aways from this example. We see that the amount of memory and 
time needed to compute ranks of matrices comprising the differential ∂p,q grows as p
moves towards the center of the Betti table. Nevertheless, for a fixed (p, q), nearly all 
of the matrices (∂p,q)a require minimal memory and time. The (∂p,q)a that require the 
most resources are those for which a = (a, b, c, d) are balanced, i.e., for which |a − b| and 
|c − d| are minimized.
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Remark 4.5. The fact that the most computationally intensive are those for which a is 
balanced could allow one to potentially dig deeper into conjectures related to Schur func-
tors. Namely, the highest weight of a given Schur module tends to be quite unbalanced. 
Given the parallel nature of these computations, one could potentially rule out the pres-
ence of certain Schur modules for many values of b and d for which a full computation 
would be impossible.

4.4. Post-processing

Having computed all of the multigraded Betti numbers, we can easily combine the 
values to obtain the standard graded Betti numbers. Obtaining the Schur functor de-
compositions is a bit more involved, though it is nearly identical to the process in [9, 
§5.1]. The main idea is once again a highest weight greedy algorithm. In the P 2 case, 
the authors were considering the decomposition as a GL3-module. In our case, we are 
considering the decomposition as a GL2 × GL2-module. The irreducible polynomial 
representations of GL2 × GL2 are products Sλ ⊗ Sμ of Schur functors where λ, μ are 
partitions with length ≤ 2. For further details, see [29, Chapter 6, Exercise 2.36].

We order bi-partitions using the standard Lex order on Z4. That is, for two bi-
partitions (λ, μ), (ν, η) we say that (λ, μ) ≤ (ν, η) if (λ1, λ2, μ1, μ2) ≤ (ν1, ν2, η1, η2) in 
the standard Lex order on Z4. This gives us a well order on bi-partitions. In particular, 
we can select a largest element.

To decompose Kp,q(P 1 × P 1; b; d) into Schur functors we apply the Algorithm for 
Schur Functor Decomposition (see below). The algorithm terminates due to the semi-
simplicity of GL2 ×GL2. More specifically, semi-implicitly implies that there is a finite 
decomposition Kp,q(P 1 × P 1; b; d) ∼=

⊕
λ,μ(Sλ(C2) ⊗ Sμ(C2))⊕cλ,μ for some constants 

cλ,μ only finitely many of which are nonzero. This means the multigraded Hilbert series 
H in the algorithm above is a sum of Hilbert series corresponding to (Sλ(C2) ⊗Sμ(C2))
which is just the product of the Hilbert series for Sλ in the variables t0, t1 and the Hilbert 
series for Sμ in a second set of variables t2, t3. The weight of the lex-leading monomial 
of the Hilbert series will always be a bi-partition, i.e. λ1 ≥ λ2 and μ1 ≥ μ2; and that 
monomial will correspond to the highest weight of some Schur modules appearing in the 
decomposition. Thus, the algorithm uses the lex-leading monomial of the Hilbert series 
to iteratively pick off summands in the decomposition of Kp,q(P 1 × P 1; b; d).

5. Qualitative aspects of the computed data

5.1. Unimodality

Our data strongly suggest that several statistics associated with the syzygies of P 1×P 1

are unimodal. More specifically, our data leads to the following conjecture.
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Algorithm for Schur Functor Decomposition

Input : βp,a(b;d) for fixed b;d, p and all a ∈ Z4
≥0 with |a| = (p + q)(d1 + d2) + (b1 + b2)

Output : A list K of bi-partitions appearing in the Schur module decomposition

of Kp,q(P1 × P1;b;d), with multiplicity.

Steps : L := {a | |a| = (p + q)(d1 + d2) + (b1 + b2)} and H =
∑
a∈L

βp,a(b;d) · ta

K = {}

While the coefficient of lex(H) > 0 do:

Let (λ, μ) = (λ1, λ2, μ1, μ2) be the weight of the lex-leading monomial in H

Let K = K ∪ {(λ, μ)}

Let H equal H minus the multigraded Hilbert series of Sλ(C2) ⊗ Sμ(C2).

Return K.

Conjecture 5.1. For any b, if either d1 or d2 is sufficiently large, then each of the fol-
lowing functions is unimodal:

(1) The standard graded Betti numbers in a single row: i 
→ βi,i+k(P 1 × P 1, b; d) for 
any fixed k.2

(2) The number of Schur functors with multiplicity appearing in a given row: fix some 
q and consider p 
→ the total number of Schur functors, counted with multiplicity, 
appearing in Kp,q(P 1 × P 1, b; d).

(3) The largest multiplicity of Schur functors appearing in a given row: fix some q and 
consider p 
→ the largest multiplicity of a Schur functor appearing in Kp,q(P 1 ×
P 1, b; d).

Remark 5.2. Our data also suggest that even the multigraded Betti numbers exhibit uni-
modality in certain ways, although in the multigraded setting there is no canonical choice 
for what one might expect to be unimodal. For example, fixing any multidegree e and 
our data suggests that i 
→ βi,ie(P 1 × P 1, b; d). It would be interesting to explore other 
ways in which the multigraded Betti numbers might satisfy some sort of unimodality or 
concavity properties. Given the large number of possible multidegrees, such questions 
can be somewhat complex.

Patterns similar to Conjecture 5.1 were observed for the Veronese syzygies of P 2 in 
[9, Section 6.4]. Interestingly in this setting the authors observed that the function p 
→

2 In the range of b we have considered in this paper, these functions are only interesting for k = 0, 1 or 2.
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the number of distinct Schur functors appearing in Kp,q(P 2, OP2(b); OP2(d)) appears to 
be unimodal (see [9, Question 6.11.(2)]). By contrast, our data provides a large number 
of counterexamples to that for P 1 ×P 1. More specifically, out of the rough 90 pairs of b
and d that we tested, the number of distinct Schur functors appearing was not unimodal.

Example 5.3. Letting b = 0, d = (3, 4), and considering q = 1 we see that the number 
of distinct Schur functors appearing in the decompositions of Kp,1(P 1 × P 1, b; d) is

(9, 26, 42, 52, 67, 71, 82,80, 87,78, 79, 63, 49, 5, 1),

which is not unimodal. We see a similar failure of the number of distinct Schur functors 
appearing in the decompositions of Kp,1(P 1 × P 1, b; d) when b = 0 and d = (3, 5):

(11, 32, 56, 67, 96, 101, 127,125, 146,137, 154,135, 141, 118, 116, 81, 33, 5, 1).

5.2. Normality

Ein, Erman, and Lazarsfeld have conjectured that, for large values of d, the Betti 
numbers in any given row β(P 1 × P 1, 0; d) should look approximately like a normal 
distribution [13, Conjecture B]. Bruce proved that a similar phenomena holds for the 
first row when d = (2, d2) and d2 → ∞ in [6, Theorem A], but that it fails for the second 
row under the same hypotheses [6, Theorem B]. See also [35,22] for related results.

Our data, while somewhat limited, suggests that results similar to [6, Theorem A, 
Theorem B] also hold for P 1 × P 1 embedded by (3, d2) as d2 → ∞. In particular, as 
d2 → ∞ the Betti numbers in the q = 1 row of β(P 1 × P 1, 0; (3, d2)) approach a normal 
distribution, while Betti numbers in the q = 2 row do not. Fig. 3 highlights this for the 
q = 1 row.

It would be interesting to better understand what happens for the q = 2 row and a 
fixed d1. This is likely related to the phenomenon of asymptotic non-vanishing of syzygies 
in the semi-ample setting as discussed in [7]. Concretely, we ask:

Question 5.4. Does there exist d1 ∈ Z≥2 such that the Betti numbers in the q = 2 row of 
β(P 1 × P 1, 0; (d1, d2)) approach a normal distribution as d2 → ∞?

6. Representation theoretic conjectures

Utilizing the representation theory of GL2 × GL2 provides the most concise way to 
express the syzygies of P 1 ×P 1. Our Schur functor data enabled us to make conjectures 
related to specific entries of the Betti tables. Additionally, our data raises questions 
regarding the ubiquity of redundant Schur functors.
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6.1. Specific entries

We first consider conjectures on specific Kp,q groups. As noted earlier, the case when 
b = 0 is of particular interest, as this case corresponds to the syzygies of the homogeneous 
coordinate ring of P 1 ×P 1 under the embedding by OP1×P1(d). Moreover, based on our 
data and the unimodality conjectures from the previous section, we expect the extremal 
entries in a row to involve the fewest Schur functors.

We thus are most interested in extremal entires in a row in the case b = 0. We first 
offer a conjecture about the last entry of the q = 1 row:

Conjecture 6.1 (Row q = 1). Let d ∈ Z2
≥1 and p = (d1 + 1)(d2 − 1) + d1. (This is the 

largest value of p such that Kp,1(P 1 × P 1, 0; d) �= 0 in this case.) Let

a :=
((

d1+1
2

)(
d2
1
)
,
(
d1+1

2
)(

d2
1
)
,
(
d1+1

1
)(

d2+1
2

)
− 1 ,

(
d1+1

1
)(

d2
2
)

+ 1
)
∈ Z4.

(1) Last entry: Assume d2 > d1. Then Kp,1(P 1×P 1, 0; d) is an irreducible Schur module. 
Specifically, if d2 > d1 then

Kp,1(P 1 × P 1,0;d) ∼= Sa+(0,0,−1,1).

(2) Second-to-last entry: Assume d2 > d1 + 1. Then Kp−1,1(P 1 × P 1, 0; d) is the direct 
sum of d2 distinct irreducible Schur modules. Specifically, if d2 > d1 + 1 then

Kp−1,1(P 1 × P 1,0;d) ∼=
d2−1⊕
i=0

Sa+(0,−d1,−2−i,−d2+2+i).

Our next conjectures focus on the last entries in the q = 2 row. In particular, the 
following conjecture describes the Schur functor decomposition for the last entry in the 
q = 2 row for all d, as well as the decomposition for the second to last entry in the q = 2
row in the special cases when d = (2, d) and d = (3, d).

Conjecture 6.2 (Row q = 2). Let d ∈ Z2
≥1 and let p = (d1 + 1)(d2 + 1) − 3. (This is the 

largest value of p such that Kp,2(P 1 × P 1, 0; d) �= 0.)

(1) Last entry: The space Kp,2(P 1 × P 1, 0; d) is a unique irreducible Schur module. 
Specifically, Kp,2(P 1 × P 1, 0; d) ∼= Sa, where

a :=
((

d1+1
2

)(
d2+1

1
)
− 1 ,

(
d1+1

2
)(

d2+1
1

)
− d1 + 1 ,

(
d1+1

1
)(

d2+1
2

)
− 1 ,(

d1+1)(d2+1)− d2 + 1
)
∈ Z4.
1 2
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(2) Second-to-last entry, d = (2, d): Assume that d = (2, d). The space Kp,2(P 1 ×
P 1, 0; d) is the direct sum of d −2 Schur modules. Specifically, Kp−1,2(P 1×P 1, 0; d) ∼=
⊕d−3

i=0 Sa+(0,0,−i,+i), where

a :=
(
3d + 2 , 3d , 1

2 (3d2 + 3d− 2) − 1 , 1
2 (3d2 + 3d− 2) − 2(d2 − d1) − 3

)
∈ Z4.

(3) Second-to-last entry, d = (3, d): Assume that d = (3, d). The space Kp,2(P 1 ×
P 1, 0; d) is the direct sum of 2d − 3 irreducible Schur module. More specifically, if

a :=
(
6d + 5 , 6d + 1 , 2d2 + 2d− 2 , 2d2 + 2d− 2d + 3

)
∈ Z4,

b :=
(
6d + 4 , 6d + 2 , 2d2 + 2d− 2 , 2d2 + 2d− 2d + 1

)
∈ Z4,

then Kp−1,2(P 1 × P 1, 0; d) ∼= ⊕d−3
i=0 Sa+(0,0,−i,i) ⊕⊕d2−2

j=0 Sb+(0,0,−i,i).

As we have only computed the full Betti table β(P 1 × P 1, 0; (3, d2)) for four values 
of d2, the evidence for part (3) of Conjecture 6.2 is admittedly scant. That said, the 
a’s in both parts (2) and (3) of Conjecture 6.2, seem to fit into a potentially more 
general pattern. This leads us to ask the following question concerning the Schur functor 
decomposition for the second to last entry in the q = 2 row in general.

Question 6.3. Let d ∈ Z2
≥1 and let p = (d1 + 1)(d2 + 1) − 3. (This is the largest value of 

p such that Kp,2(P 1 × P 1, 0; d) �= 0.) If

a :=
((

d1+1
2

)(
d2+1

1
)
− 1 ,

(
d1+1

2
)(

d2+1
1

)
− 2d1 + 1 ,

(
d1+1

1
)(

d2+1
2

)
− 2 ,(

d1+1
1

)(
d2+1

2
)
− 2d2 + 2

)
,

then is it the case that as representations of GL2 × GL2:

d2−3⊕
i=0

Sa+(0,0,−i,i) ⊂ Kp−1,2
(
P 1 × P 1,0;d

)
?

6.2. Redundant Schur functors

The central result of [12] shows that asymptotically, Betti tables have numerous “re-
dundant” entries. That is, it is very often the case that both Kp,q and Kp−1,q+1 will be 
nonzero. These entries are “redundant” in the sense that they could not be predicted by 
the Hilbert function of the module.

A folklore question asks to find similar “redundant” representation in the Schur functor 
decomposition of Kp,q and Kp−1,q+1. More specifically, we consider examples of a Schur 
functor Sμ ⊗ Sλ that appears in the Schur functor decomposition of both Kp,q(P 1 ×
P 1, b; d) and Kp−1,q+1(P 1×P 1, b; d). In [9, Example 6.17 and Question 6.16], the authors 
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give examples of redundant Schur functors for P 2 and ask whether redundant Schur 
functors occur frequently or sporadically. Based upon our data, redundant Schur functors 
seem quite common for P 1 × P 1. For example, out of the approximately 200 pairs of 
(b; d) for which we computed Schur functor computations rough two-thirds contained 
redundant Schur functors.

While we did not find much of a pattern for when and where redundant Schur functors 
might occur, it would be interesting to explore that question further. We did observe, 
anecdotally, that redundant Schur functors were more likely to occur if one of d1, d2, b1 or 
b2 is sufficiently large. Focusing on the case when b = 0 our data suggests the following 
conjecture.

Conjecture 6.4. If either d1 or d2 is sufficiently large, then there exists p, q such that 
Kp,q(P 1 × P 1, 0; d) has redundant Schur functors.

Furthermore, within each example, the number of redundant Schur functors seems 
able to be quite large both in terms of the total number and in terms of percentage of 
total Schur functors. For example, the largest total number of redundant Schur functors 
we observed is when d = (2, 10) and b = (0, 8); in this case, there are 596 redundant 
Schur functors out of 7135 total Schur functors (without multiplicity). The redundant 
Schur functors make up the largest percentage of total Schur functors (counted without 
multiplicity) occurs when d = (3, 5) and b = (2, 4) where approximately 22.9% of Schur 
functors are redundant.

In addition, our data shows a number of examples where for a particular p and q
all of the Schur functors appearing in the decomposition of Kp,q(P 1 × P 1, b; d) are re-
dundant. For example, when d = (2, 3) and b = (1, 2) both K5,0(P 1 × P 1, (1, 2); (2, 3))
and K4,1(P 1 × P 1, (1, 2); (2, 3)) are isomorphic to S(8,3,11,6) ⊕ S(7,4,10,7) ⊕ S(6,5,9,8) im-
plying all of these Schur functors are redundant. Appendix C includes the Schur functor 
decompositions of Kp,q(P 1 × P 1, (1, 2); (2, 3)) for all p and q.

7. Boij-Söderberg theory conjectures and questions

7.1. Background on Boij–Söderberg theory

Boij–Söderberg theory provides a way to decompose a Betti table as a positive rational 
sum of certain atomic building blocks called pure diagrams. The theory was conjectured 
by [4] and the main results were proven in [18]. See also [26,28] for expository treatments 
of the theory or [5,19,16,27,3,2,21,31,30] for more details on various aspects of the theory.

Having computed an array of Betti tables for embeddings of P 1 ×P 1, we can analyze 
the pure diagrams and coefficients that arise in corresponding Boij–Söderberg decom-
positions. In order to get well-defined coefficients, we need to choose a specific set of 
representatives for the pure diagrams πδ.
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Set [n] = {0, 1, ..., n −1}. Given a sequence of integers δ = (δ0, . . . , δr), called a degree 
sequence, let πδ be the Betti table with entries

βi,j(πδ) =
{∏

i�=j
1

|δi−δj | if j = δi

0 if j �= δi.

For instance

π(0,1,3,4) =
( 1

12
1
6 · ·

· · 1
6

1
12

)
Note in particular, that πδ will often have entries in Q, not in Z.

For any graded Cohen-Macaulay module M over a polynomial ring, there exists a 
unique set of degree sequences CM such that

β(M) =
∑

δ∈CM

aδπδ with aδ ∈ Q.

This is called the Boij-Söderberg decomposition of M , and the rational numbers {aδ | δ ∈
CM} are called the Boij-Söderberg coefficients of M .

7.2. Conjectures on Boij-Söderberg coefficients

Formulas for the coefficients have been found in certain cases where M has a well-
understood algebraic or combinatorial structure [20,38,39,31,30,1,17,25]. In this section, 
we aim to provide conjectures on Boij-Söderberg coefficients for the Betti tables of P 1 ×
P 1.

One common feature of Boij-Söderberg decompositions, exhibited in many of the 
examples referenced above, is that they rarely “skip over” potential degree sequences. 
For instance, in the case b = (0, 0) and d = (2, 5), the shape of the Betti table is:⎛⎜⎝ ∗ · · · · · · · · · · · · · · ·

· ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ·
· · · · · · · · · · · · ∗ ∗ ∗ ∗

⎞⎟⎠
where the zero entries are marked with · and nonzero entries are marked with ∗. Based 
on this shape, there are only 4 pure diagrams which could potentially arise in the Boij-
Söderberg decomposition, depending on where you choose to shift from the 1st row to 
the 2nd row. (See also Example 7.3 below, which specifies the corresponding degree se-
quences.) In this example, the coefficients of each such potential pure diagram turn out 
to be nonzero, although there is no obvious reason why this ought to be true. Conjec-
ture 7.1 posits that this phenomenon occurs whenever b = (0, 0). More precisely, when 
b = (0, 0) and d = (d1, d2) where d1 ≤ d2, the degree sequences which could possibly 
occur are given by
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δj = [(d1 + 1)(d2 + 1)] \ {1, (d1 + 1)(d2 + 1) − d1 − j} for 0 ≤ j ≤ (d1 − 1)(d2 − 2)

and we conjecture the following.

Conjecture 7.1. The Boij-Söderberg coefficient aδj
is nonzero for each j.

We now attempt to better understand the values of the nonzero coefficients. Our first 
such conjecture, provides a complete description of the Boij-Söderberg coefficients in the 
case where d = (2, d2) and b = (0, b2) for 0 ≤ b2 ≤ d2 − 2 and d2 ≥ 3. In particular, 
taking b2 = 0, this provides a complete conjectural description of the Boij-Söderberg 
coefficients of the homogeneous coordinate ring of P 1 ×P 1 embedded by OP1×P1(2, d2).

Conjecture 7.2. Let d = (2, d2) and b = (0, b2) for some 0 ≤ b2 ≤ d2−2. Assume d2 ≥ 3. 
The Boij-Söderberg decomposition will involve the degree sequences δj for 0 ≤ j ≤ d2 −2
where δj is defined as

δj =
{

[3(d2 + 1)] \ {b2 + 1, 3d2 + 1 − j} 0 ≤ j ≤ d2 − b2 − 2
[3(d2 + 1)] \ {d2 − j − 1, 2d2 + b2 + 3} d2 − b2 − 1 ≤ j ≤ d2 − 2.

Moreover, the Boij-Söderberg coefficients corresponding to δj will be given by the formula

aδj
=

{
2(3d2)! j �= d2 − b2 − 2
2(d2 + 2)(3d2)! j = d2 − b2 − 2.

In particular, all of the coefficients, except for the last one, will be identical, and as 
d2 → ∞, the last coefficient will dominate.

To prove Conjecture 7.2, one might be able to use [34, Corollary 5], which provides 
an explicit formula for the Betti numbers in this case.

Example 7.3. As noted above, if we take b2 = 0 and d2 ≥ 3, then Conjecture 7.2 implies 
that the Boij-Söderberg decomposition for the homogeneous coordinate ring of P 1 × P 1

embedded by OP1×P1(2, d2) is:

β
(
P 1 × P 1,0; (2, d2)

)
= 2(3d2)!

(
πδ0 + πδ1 + · · · + πδd2−3

)
+ 2(d2 + 2)(3d2)!πδd2−2

where δj is the degree sequence (0, 2 . . . , 3d2 − j, ̂3d2 + 1 − j, 3d2 + 2 − j . . . , 3d2 + 2). 
For example, if d2 = 5 then we have:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ0 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1̂6, 17)
δ1 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1̂5, 16, 17)
δ2 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1̂4, 15, 16, 17)
δ = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1̂3, 14, 15, 16, 17)
3
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Fig. 6. The Boij-Soderberg coefficients for d = (3, n) and b = (0, 0).

and Conjecture 7.2 states that

β
(
P 1 × P 1,0; (2, 5)

)
= 2(15!) (πδ0 + πδ1 + πδ2) + 14(15!)πδ3 .

Remark 7.4. Conjecture 7.2 would imply the following curious fact: consider the Betti 
table of the homogeneous coordinate ring (that is, with b = 0) of P 1 × P 1 embedded 
by (2, d2). As d2 → ∞, these Betti tables will be “asymptotically pure” in a sense that 
parallels the main result of [23], where these Betti tables are asymptotically dominated by 
the contributions from a single pure diagram. See also [41,24]. It would be very interesting 
to better understand the limits under which such Betti tables are “asymptotically pure”; 
this question is wide open for P 2 as well, as discussed in [9, §6.3]

When d = (3, d2) and b = (0, 0), we have a conjecture for roughly the first half of the 
coefficients. Fig. 6 displays these coefficients, rescaled by a factor of 6d2(3d2)! (so that 
these numbers sum to 1) to allow for a better comparison as d2 grows. Notice that in 
each case, there is a set of small values followed by a peak.

Conjecture 7.5. For b = (0, 0) and d = (3, d2), with d2 ≥ 4, the Boij-Söderberg coeffi-
cients for j = 0, . . . , d2 − 4 are

aδj = (j + 1)(4d2 + 4)!(4d2+4) .

4 4
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7.3. More questions

Our data on Boij-Söderberg coefficients also illuminated some fascinating patterns 
which we were not able to convert into precise conjectures. We conclude by drawing 
attention to a couple of these phenomena for curious readers.

As we saw in the previous conjectures, there are various situations where, if we fix some 
of the variables b1, b2, d1, or d2, then the number of Boij-Söderberg coefficients remains 
fixed. When this happens, it is natural to understand how the individual coefficients 
depend on the remaining variables.

The sum of the Boij-Söderberg coefficients of a module can be determined by the 
multiplicity of that module, and in the P 1 × P 1 case, this sum is

∑
δ∈CS(b;d)

aδ = 2d1d2

((d1 + 1)(d2 + 1))3 · ((d1 + 1)(d2 + 1))!

where xn denotes the falling factorial:

xn =
n−1∏
k=0

(x + k).

To better analyze the coefficients, we rescale:

bδ = aδ
((d1 + 1)(d2 + 1))! and note that

∑
δ∈CS(b;d)

bδ = 2d1d2

((d1 + 1)(d2 + 1))3 .

While it appears difficult to give concrete conjectural formulae for the Boij-Söderberg 
coefficients for larger values of d than those studied in the previous subsection, the above 
equation suggests something about the behavior of the bδ as a rational function of d1
and/or of d2.

The following is a concrete conjecture in this direction:

Conjecture 7.6. For b = (d1 − 1, b2) and d = (d1, d2), with d1 ≤ d2, 0 ≤ b2 ≤ d2 − 2, the 
degree sequences appearing in the Boij-Söderberg decomposition of β(P 1 × P 1, b; d) are 
precisely:

δj = [(d1 + 1)(d2 + 1) − 1] \ {(b2 + 1)d1 − j} 0 ≤ j ≤ (b2 + 1)(d1 − 1).

For any fixed b2 and d1, the coefficient aδj has the form

aδj = pj(d2)((d1 + 1)(d2 + 1))!

where pj is some degree −2 rational function in d2.
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Table 2
Asymptotic values of BS-coefficients as d2 → ∞, normalized so 
that the numbers sum to 1.
d1 b Normalized BS-coefficients as d2 → ∞
2 (1, 0) (1/2, 1/2)

(1, 1) (2/9, 5/9, 2/9)
(1, 2) (8/81, 32/81, 67/162, 5/54)

3 (2, 0) (3/8, 1/4, 3/8)
4 (3, 0) (8/25, 4/25, 11/50, 3/10)

Evidence for this conjecture is provided in Appendix D. Moreover, the above discussion 
and Conjecture 7.6 suggest the following question (Table 2).

Question 7.7. What is the value of

lim
d2→∞

aδj
((d1 + 1)(d2 + 1))3

2d1d2((d1 + 1)(d2 + 1))!?

Most of the conjectures considered in this section can be understood as being moti-
vated by the following overarching but vague question:

Question 7.8. To what extent, and under what additional restrictions, can the Boij-
Söderberg coefficients of β(P 1 × P 1, b; d) be understood as rational functions in b1, b2, 
d1 and/or d2?

We end with a mystery. In Appendix D, we plotted the Boij-Söderberg coefficients 
of β(P 1 × P 1, b; d), after rescaling so that the sum of the coefficients is 1, for various 
natural families depending on b and/or d. We simply note that the graphics suggest 
a remarkable uniformity among these families as one varies the parameters. Can one 
explain, or even precisely describe, this phenomenon?

Appendix A. Number and size of matrices computed

We record, for nearly all (b; d) pairs for which we have complete data, the number of 
matrices in the relevant range and the size of the largest matrix (Tables 3 and 4).
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Table 3
Matrix data.

d b Number of 
matrices

Largest 
matrix

b Number of 
matrices

Largest 
matrix

(2, 4) (0, 0) 75 625 × 2431 (1, 0) 0 N/A
(0, 1) 0 N/A (1, 1) 23 73 × 81
(0, 2) 17 19 × 15 (1, 2) 109 554 × 909
(0, 3) 44 77 × 82 (1, 3) 212 1387 × 3171

(2, 5) (0, 0) 216 3386 × 13946 (1, 0) 0 N/A
(0, 1) 101 1508 × 6988 (1, 1) 31 108 × 116
(0, 2) 20 23 × 18 (1, 2) 135 1245 × 1911
(0, 3) 55 116 × 117 (1, 3) 297 5302 × 10822
(0, 4) 110 434 × 552 (1, 4) 486 9432 × 25262

(2, 6) (0, 0) 466 18, 902 × 81, 386 (1, 0) 0 N/A
(0, 1) 273 8547 × 40, 922 (1, 1) 35 148 × 156
(0, 2) 150 3075 × 16, 649 (1, 2) 171 2476 × 3607
(0, 3) 62 159 × 155 (1, 3) 367 15, 588 × 29, 403
(0, 4) 131 723 × 868 (1, 4) 651 44, 886 × 107, 138
(0, 5) 212 2512 × 3580 (1, 5) 919 62, 250 × 187, 699

(2, 7) (0, 0) 831 108, 060 × 482, 053 (1, 0) 0 NA
(0, 1) 573 49, 808 × 243, 840 (1, 1) 43 196 × 204
(0, 2) 368 18, 682 × 102, 154 (1, 2) 197 4392 × 6171
(0, 3) 226 5600 × 34, 800 (1, 3) 456 39, 140 × 69, 452
(0, 4) 148 1118 × 1286 (1, 4) 795 163, 325 × 358, 383
(0, 5) 251 4562 × 6132 (1, 5) 1198 352, 746 × 949, 098
(0, 6) 385 14, 782 × 22, 836 (1, 6) 1619 436, 912 × 1, 248, 208

(2, 8) (0, 0) 1391 627, 537 × 2, 886, 389 (0, 7) 622 87, 266 × 144, 514
(0, 1) 995 291, 943 × 1, 460, 756 (1, 0) 0 NA
(0, 2) 721 113, 886 × 627, 766 (1, 1) 47 249 × 255
(0, 3) 479 36, 350 × 224, 623 (1, 2) 233 7310 × 9966
(0, 4) 348 9408 × 66, 110 (1, 3) 527 86, 245 × 146, 042
(0, 5) 280 7594 × 9764 (1, 4) 968 498, 024 × 1, 022, 361
(0, 6) 445 28, 470 × 41, 648

(2, 9) (0, 7) 809 177, 658 × 278, 759 (1, 2) 259 11, 415 × 15, 196
(1, 0) 0 N/A (1, 3) 616 174, 144 × 283, 727
(1, 1) 55 310 × 314

(2, 10) (0, 8) 1106 1, 111, 726 × 1, 843, 366 (1, 2) 295 17, 132 × 22, 350
(1, 0) 0 N/A (1, 3) 687 325, 114 × 513, 364
(1, 1) 59 376 × 378

(2, 11) (1, 0) 0 N/A (1, 2) 321 24, 649 × 31, 638
(1, 1) 67 450 × 450 (1, 3) 776 574, 112 × 882, 626
ID:YJABR AID:18318 /FLA [m1L; v1.310] P.24 (1-33)
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Table 4
Matrix data.

d b Number of 
matrices

Largest 
matrix

b Number of 
matrices

Largest 
matrix

(3, 3) (0, 0) 104 1772 × 6180 (1, 1) 31 88 × 96
(0, 1) 0 NA (1, 2) 125 740 × 1204
(0, 2) 19 20 × 16 (2, 2) 308 2838 × 7308

(3, 4) (0, 0) 521 25, 320 × 87, 114 (1, 2) 177 2038 × 3023
(0, 1) 148 6678 × 29, 840 (1, 3) 368 11, 086 × 21, 945
(0, 2) 23 26 × 20 (2, 0) 24 24 × 20
(1, 3) 58 130 × 140 (2, 1) 164 1956 × 2975
(1, 0) 122 2407 × 12, 740 (2, 2) 468 19, 478 × 43, 618
(1, 1) 37 138 × 144 (2, 3) 836 35, 556 × 96, 730

(3, 5) (0, 0) 1344 361, 276 × 1, 231, 276 (1, 3) 495 39, 424 × 70, 894
(0, 1) 711 119, 254 × 505, 443 (1, 4) 858 162, 286 × 367, 093
(0, 2) 236 19168 × 104246 (2, 0) 29 30 × 24
(0, 3) 72 196 × 200 (2, 1) 219 4350 × 6320
(0, 4) 153 1078 × 1328 (2, 2) 618 87, 401 × 178, 536
(1, 0) 338 18, 014 × 101, 895 (2, 3) 1217 348, 702 × 971, 100
(1, 1) 210 5758 × 35, 668 (2, 4) 1891 467, 124 × 1, 322, 104
(1, 2) 215 4470 × 6248

(3, 6) (0, 3) 334 45, 094 × 290, 746 (1, 3) 598 110, 702 × 186, 050
(0, 4) 181 1774 × 2076 (1, 4) 1106 697, 950 × 1, 436, 165
(0, 5) 296 8224 × 11, 390 (2, 0) 34 34 × 28
(1, 0) 740 142, 906 × 845, 408 (2, 1) 259 8347 × 11, 760
(1, 1) 476 44, 876 × 290, 369 (2, 2) 793 300, 091 × 573, 890
(1, 2) 468 11, 665 × 83, 466

(3, 7) (0, 4) 518 94, 088 × 700, 128 (1, 2) 827 97, 064 × 709, 416
(0, 5) 348 14, 768 × 19, 378 (1, 3) 968 268940 × 428636
(0, 6) 554 68, 616 × 102, 344 (2, 0) 39 40 × 32
(1, 0) 1130 1, 128, 854 × 6, 980, 468 (2, 1) 314 14, 766 × 20, 308
(1, 1) 965 369, 576 × 2, 450, 184 (2, 2) 950 855, 136 × 1, 556, 128

(3, 8) (0, 5) 745 177, 432 × 1, 500, 926 (2, 0) 44 44 × 36
(0, 6) 636 130, 144 × 184, 592 (2, 1) 354 24, 136 × 32, 574
(0, 7) 900 553, 291 × 879, 321 (2, 2) 1130 2, 124, 896 × 3, 719, 448

(3, 9) (0, 7) 1026 1, 105, 918 × 1, 673, 092 (2, 1) 409 37, 620 × 49, 992
(2, 0) 49 50 × 40

(4, 4) (0, 0) 1715 853, 068 × 2, 722, 820 (1, 2) 228 5269 × 7364
(0, 1) 764 165, 929 × 743, 227 (1, 3) 501 50, 156 × 91, 458
(0, 2) 198 6518 × 43, 768 (2, 2) 682 121, 747 × 241, 924
(0, 3) 80 207 × 222 (2, 3) 1321 581, 410 × 1, 582, 730
(1, 1) 249 24, 765 × 138, 553

(4, 5) (0, 2) 1102 731, 824 × 4, 033, 789 (2, 0) 525 63, 634 × 456, 031
(0, 3) 315 14, 409 × 117, 520 (2, 1) 521 15, 511 × 120, 826
(0, 4) 207 2121 × 2596 (2, 2) 879 517, 511 × 948, 896
(1, 1) 1075 755, 881 × 4, 074, 383 (2, 3)
(1, 2) 559 70, 246 × 471, 986 (3, 0) 94 300 × 318
(1, 3) 661 171, 904 × 287, 389 (3, 1) 673 169, 940 × 292, 984

(4, 6) (0, 4) 507 27, 864 × 267, 592 (2, 2) 1381 1713790 × 2964636
(0, 5) 411 21, 318 × 28, 941 (3, 0) 116 417 × 438
(1, 3) 1132 471, 259 × 740, 692 (3, 1) 813 462, 729 × 767, 366
(2, 1) 956 157, 164 × 1, 277, 412

(4, 7) (0, 5) 791 49, 046 × 542, 194 (3, 0) 130 540 × 568
(0, 6) 762 221, 972 × 324, 448 (3, 1) 991 1, 100, 334 × 1, 771, 080
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Appendix B. Total Betti numbers
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Appendix C. Example of Schur functor decomposition

K0,0(P 1 × P 1, (1, 2); (2, 3)) = S(1,0,2,0)

K1,0(P 1 × P 1, (1, 2); (2, 3)) = S(2,1,3,2) ⊕ S(2,1,4,1) ⊕ S(2,1,5,0) ⊕ S(3,0,3,2) ⊕ S(3,0,4,1)

K2,0(P 1 × P 1, (1, 2); (2, 3)) = S(3,2,4,4) ⊕ S⊕2
(3,2,5,3) ⊕ S⊕2

(3,2,6,2) ⊕ S(3,2,7,1) ⊕ S(4,1,4,4)

⊕ S⊕2
(4,1,5,3) ⊕ S⊕2

(4,1,6,2) ⊕ S(4,1,7,1) ⊕ S(5,0,5,3)

K3,0(P 1 × P 1, (1, 2); (2, 3)) = S⊕2
(4,3,6,5) ⊕ S⊕3

(4,3,7,4) ⊕ S⊕2
(4,3,8,3) ⊕ S(4,3,9,2)

⊕ S⊕2
(5,2,6,5) ⊕ S⊕3

(5,2,7,4) ⊕ S⊕2
(5,2,8,3) ⊕ S(5,2,9,2)

⊕ S(6,1,6,5) ⊕ S(6,1,7,4) ⊕ S(6,1,8,3)

K4,0(P 1 × P 1, (1, 2); (2, 3)) = S(5,4,7,7) ⊕ S⊕2
(5,4,8,6) ⊕ S⊕2

(5,4,9,5) ⊕ S(5,4,10,4)

⊕ S(5,4,11,3) ⊕ S(6,3,7,7) ⊕ S⊕2
(6,3,8,6)

⊕ S⊕2
(6,3,9,5) ⊕ S(6,3,10,4) ⊕ S(7,2,8,6) ⊕ S(7,2,9,5) ⊕ S(7,2,10,4)

K4,1(P 1 × P 1, (1, 2); (2, 3)) = S(6,5,9,8) ⊕ S(7,4,10,7) ⊕ S(8,3,11,6)

K5,0(P 1 × P 1, (1, 2); (2, 3)) = S(6,5,9,8) ⊕ S(7,4,10,7) ⊕ S(8,3,11,6)

K5,1(P 1 × P 1, (1, 2); (2, 3)) = S(7,6,10,10) ⊕ S⊕2
(7,6,11,9) ⊕ S⊕2

(7,6,12,8) ⊕ S(7,6,13,7)

⊕ S(7,6,14,6) ⊕ S(8,5,10,10) ⊕ S⊕2
(8,5,11,9) ⊕ S⊕2

(8,5,12,8)

⊕ S(8,5,13,7) ⊕ S(9,4,11,9) ⊕ S(9,4,12,8) ⊕ S(9,4,13,7)

K6,1(P 1 × P 1, (1, 2); (2, 3)) = S⊕2
(8,7,12,11) ⊕ S⊕3

(8,7,13,10) ⊕ S⊕2
(8,7,14,9) ⊕ S(8,7,15,8)

⊕ S⊕2
(9,6,12,11) ⊕ S⊕3

(9,6,13,10) ⊕ S⊕2
(9,6,14,9)

⊕ S(9,6,15,8) ⊕ S(10,5,12,11) ⊕ S(10,5,13,10) ⊕ S(10,5,14,9)

K7,1(P 1 × P 1, (1, 2); (2, 3)) = S(9,8,13,13) ⊕ S⊕2
(9,8,14,12) ⊕ S⊕2

(9,8,15,11) ⊕ S(9,8,16,10)

⊕ S(10,7,13,13) ⊕ S⊕2
(10,7,14,12) ⊕ S⊕2

(10,7,15,11)

⊕ S(10,7,16,10) ⊕ S(11,6,14,12)

K8,1(P 1 × P 1, (1, 2); (2, 3)) = S(10,9,15,14) ⊕ S(10,9,16,13) ⊕ S(10,9,17,12) ⊕ S(11,8,15,14)

⊕ S(11,8,16,13)

K9,1(P 1 × P 1, (1, 2); (2, 3)) = S(11,10,17,15)

Appendix D. Boij-Söderberg coefficients for d = (d1, d2), b = (d1 − 1, b2)

We record the Boij-Söderberg coefficients for d = (d1, d2), b = (d1−1, b2), normalized 
so that the coefficients sum to 1. This provides evidence for Conjecture 7.6 and illustrates 
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the asymptotic behavior of the Boij-Söderberg coefficients in 1-parameter families of fixed 
degree sequence length.
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