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1. Castelnuovo–Mumford regularity on Projective Spaces

Before discussing multigraded Castelnuovo–Mumford regularity on products of
projective spaces and our new work, we begin by briefly recalling the standard
graded story of Castelnuovo–Mumford regularity on a single projective space. In-
troduced by Mumford in the mid-1960’s Castelnuovo–Mumford regularity is de-
fined in terms of cohomological vanishing.

Definition 1.1. A coherent sheaf F on Pn is d-regular if and only if:

Hi(Pn,F(d− i)) = 0 for all i > 0.

The Castelnuovo–Mumford regularity of F is then

reg(F) := min
!
d ∈ Z

"" F is d-regular
#
.

Roughly speaking one should think about Castelnuovo–Mumford regularity as
being a measure of geometric complexity. Mumford was interested in such a mea-
sure as it plays a key role in constructing Hilbert and Quot schemes. In particular,
being d-regular implies that F(d) is globally generated. However, in the 1980’s
Eisenbud and Goto showed that being d-regular was also closely connected to
interesting homological properties.

Theorem 1.2. [4] Let F be a coherent sheaf on Pn and M =
$

e∈Z H
0(Pn,F(e))

the corresponding section ring. The following are equivalent:

• M is d-regular;
• βi,j(M) := dimK Tori(M,K)j = 0 for all i ≥ 0 and j > d+ i;
• M≥d has a linear resolution.

The goal of our work is to try and understand how this theorem may be gener-
alized to the multigraded setting, i.e. from coherent sheaves on a single projective
space to sheaves on a product of projective spaces.

2. Multigraded Setting: Products of Projective Spaces

Shifting to the multgraded setting, we fix a dimension vector n = (n1, n2, . . . , nr) ∈
Nr and let Pn := Pn1 ×Pn2 × · · ·×Pnr . We then let S = K[xi,j | 1 ≤ i ≤ r, 0 ≤ j ≤
ni] be the Cox ring of Pn with the Pic(X) ∼= Zr-grading given by deg xi,j = ei ∈ Zr,
where ei is the i-th standard basis vector in Zr.

Maclagan and Smith generalized Castelnuovo–Mumford regularity to this set-
ting in terms of certain cohomology vanishing. Before we can state their definition
of multigraded regularity we need to fix some useful notation to described the
regions in which we will require cohomology to vanish.
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Figure 1. The multigraded Castelnuovo–Mumford regularity of
OX where X ⊂ P1 × P1 is the subscheme consisting of three
distinct points ([1 : 1], [1 : 4]), ([1 : 2], [1 : 5]), and ([1 : 3], [1 : 6]).

Notation 2.1. Given d ∈ Zr and i ∈ Z≥0 we let:

Li(d) :=
%

v∈N
|v|=i

(d− v) + Nr.

In order to get a sense for what these regions look like note when r = 2 the
region Li(d) looks like a staircase with (i + 1)-corners. Below we’ve plotted the
regions L1(0, 0), L2(0, 0), and L3(0, 0). Roughly speaking we are going to define
regularity by require Hi to vanish on Li.

With this notation in hand we recall the notion of multigraded Castelnuovo–
Mumford regularity as introduced by Maclagan and Smith.

Definition 2.2. [5, Definition 6.1] A coherent sheaf F on Pn is d-regular if and
only if

Hi (Pn,F(e)) = 0 for all e ∈ Li(d).

The multigraded Castelnuovo–Mumford regularity of F is then the set:

reg(F) :=
!
d ∈ Zr

"" F is d-regular
#
⊂ Zr.

Even for relatively simple examples the multigraded Castelnuovo–Mumford reg-
ularity does not necessarily have a unique minimal element (see Figure 2). That
said reg(F) does have the structure of a module over the semi-group Nef(Pn) ∼= Nr,
i.e. if d ∈ reg(F) then d+ e ∈ reg(F) for all e ∈ Nr.
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The obvious approaches to generalize Theorem 1.2 to a product of projective
spaces turn out not to work. For example, the multigraded Betti numbers do not
determine multigraded Castelnuovo–Mumford regularity [2, Example 5.1] With
this in mind we focus on generalizing part (3) of Theorem 1.2.

Definition 2.3. [2] Let F• be a complex of Zr-graded free S-modules.

(1) We say that F• is d-linear if and only if F0 is generated in degree d and
each twist of Fi is contained in Li(d).

(2) We say that F• is d-quasilinear if and only if F0 is generated in degree d
and each twist of Fi is contained in Li−1(d− 1).

In order to see the difference between linear and quasilinear resolutions we note
that on a product of projective spaces the irrelevant ideal generally will have a
quasilinear resolution, not a linear resolution. For example, if we consider P1 ×P2

so that S = K[x0, x1, y0, y1, y2] and B = 〈x0, x1〉 ∩ 〈y0, y1, y2〉 then the minimal
graded free resolution of S/B is:

S S(−1,−1)6
S(−1,−2)6

⊕
S(−2,−1)3

S(−1,−3)2

⊕
S(−2,−2)3

S(−2,−3) 0.

In particular, we see that the minimal graded free resolution S/B is not (0, 0)-linear
since (−1,−1) ∕∈ L1(0, 0), however, it is (0, 0)-quasilinear.

It is not the case that M being d-regular implies M≥d has a linear resolution
[2, Example 4.2], however, we can characterize being d-regular in terms of M≥d

having a quasilinear resolution.

Theorem 2.4. [2, Theorem A] Let M be a finitely generated Zr-graded S-module
with H0

B(M) = 0 then:

M is d-regular ⇐⇒ M≥d has a d-quasilinear resolution

We briefly sketching the proof of the above theorem:

(1) Using a Fourier-Mukai argument we construct a complex G• of free Zr-
graded S-modules whose multigraded Betti numbers are given (in some
range) as follows:

βi,a (G•) = dimH |a|−i
&
Pn, M̃ ⊗ Ωa

Pn(a)
'
.

(2) Making use of a spectral sequence argument we show that even though G•
is not a priori a resolution of M≥d we have that:

βi,a (M≥d) = βi,a (G•) .

(3) Finally, we characterize M being d-regular in terms of the vanishing of
the cohomology in (1) above.

Note the complex G• constructed in part (1) of the proof sketch above is a
priori not a resolution of M≥d, but instead is a virtual resolution of M [1]. That
said as noted above it does have the same Betti numbers as M≥d, and in all the
examples we have done it turns out to be a resolution.
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Conjecture 2.5. [2, Conjecture 6.7] The complex G• is the minimal free resolu-
tion of M≥d.

3. Further Questions

Since computing the minimal graded free resolution of M≥d can be effectively
done via Gröbner basis methods, Theorem 2.4 provides an efficient algorithm for
checking whether a module is d-regular for a particular d ∈ Zr. It would be
interesting to know whether such an algorithm could be extended to computing
all of the minimal elements of reg(M).

Question 3.1. Is there an effective algorithm for computing the multigraded
Castelnuovo–Mumford regularity of a coherent sheaf or module on Pn?

This is equivalent to finding a finite box in Zr that contains all of the minimal
elements of reg(M). If such a finite box does exist, it is very special to the case of
a product of projective spaces.

In particular, one may consider multigraded Castelnuovo–Mumford regularity
of sheaves and modules on other toric varieties [5]. It turns out that there are
examples of finitely generated modules on Hirzebruch surfaces whose multigraded
Castelnuovo–Mumford regularity does not lie in finite a box [3]. This naturally
leads one to ask what assumptions one needs to avoid such potential issues.

Question 3.2. Let X be a smooth projective toric variety, and M a finitely
generated Pic(X)-graded Cox(X)-module. Under what assumptions is reg(M)
finitely generated as a module over the semi-group Nef(X)?
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