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EFFECTIVE BOUNDS ON THE DIMENSIONS

OF JACOBIANS COVERING ABELIAN VARIETIES

JULIETTE BRUCE AND WANLIN LI

(Communicated by Rachel Pries)

Abstract. We show that any abelian variety over a finite field is covered by a
Jacobian whose dimension is bounded by an explicit constant. We do this by
first proving an effective and explicit version of Poonen’s Bertini theorem over
finite fields, which allows us to show the existence of smooth curves arising as
hypersurface sections of bounded degree and genus. Additionally, for simple
abelian varieties we prove a better bound. As an application, we show that

for any elliptic curve E over a finite field and any n ∈ N, there exist smooth
curves of bounded genus whose Jacobians have a factor isogenous to En.

Over an infinite field, every abelian variety is covered by the Jacobian variety
of a smooth connected curve. In fact, given an embedding of the abelian variety,
one can even provide an effective upper bound on the dimension of the Jacobian
variety using the dimension and degree of the abelian variety (see [Mil08, Section
III]). We show that an analogous effective statement holds over a finite field.

Theorem A. Fix r, n ∈ N with n ≥ 2, and let Fq be a finite field of characteristic
p. There exists an explicit constant1 Cr,q such that if A ⊂ P

r
Fq

is a non-degenerate

abelian variety of dimension n, then for any d ∈ N satisfying

Cr,qζA

(
n+

1

2

)
deg(A) ≤ q

d
max{n+1,p} (d+ 1)

dn+1 + dn + q
d

max{n+1,p}
,

there exists a smooth geometrically connected curve over Fq whose Jacobian J maps
dominantly onto A, where

dim J ≤
⌊
deg(A)dn−1 − 1

r − 1

⌋⎛⎝deg(A)dn−1 −

⌊
deg(A)dn−1−1

r−1

⌋
+ 1

2
(r − 1)− 1

⎞
⎠ .

Moreover, if A ⊂ P
r
Fq

is simple, then for any d ∈ N satisfying

deg(A) ≤ (d− 1)q
1
2 (d+1)(d+2)

dn−1 − 1
,

there exists a smooth geometrically connected curve over Fq whose Jacobian J maps
dominantly onto A, where

dim J ≤ deg(A)dn−1
(
deg(A)dn−1 + 1

)
.
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536 JULIETTE BRUCE AND WANLIN LI

Over an infinite field the fact that every abelian variety is covered by the Jacobian
variety of a smooth connected curve is long known. The key idea, which we review
(and slightly extend) in Proposition 2.1, is this: if A ⊂ P

r
k is an embedded n-

dimensional abelian variety and C is a smooth curve which arises as the intersection
of A with a linear subspace L ⊂ P

r
k of codimension n−1, then Jac(C) will cover A.

It is thus sufficient to find a linear subspace of codimension n− 1 which intersects
A in a smooth curve. Over an infinite field, such a linear space exists by Bertini’s
theorem.

When the base field k is a finite field, the situation is substantially more subtle.
For instance, it need no longer be the case that there exists even a single hyperplane
in P

r
k that has a smooth intersection with A. Poonen’s Bertini theorem shows that

while one cannot necessarily find smooth hyperplane sections, smooth hypersurface
sections always exist if the degree of the hypersurface is allowed to be arbitrarily
high [Poo04, Theorem 1.1]. By induction, there exist homogeneous polynomials
f1, . . . , fn−1 of high enough degree such that A ∩ V(f1, . . . , fn−1) is a smooth con-
nected curve. This implies the existence of a Jacobian variety mapping dominantly
onto A when k is a finite field.

While Poonen’s result is enough to show existence, it is not enough to provide
the explicit bounds appearing in Theorem A. For example, one does not necessarily
know what the degrees of f1, . . . , fn−1 may be. In fact, since the construction of
the fk is inductive, it may be the case that the choice of f1, . . . , fk−1 affects the
degree of fk. Existence was also proved over finite fields independently by Gabber
using different methods [Gab01, Corollary 2.5]; however, this also does not provide
explicit bounds.

We prove Theorem A by first proving an effective version of Poonen’s result with
explicit bounds.

Theorem B. Fix r, n ∈ N with n ≥ 2, and let Fq be a finite field of characteristic p.
For any 1 ≤ k ≤ n−1 there exists an explicit constant2 Cr,q such that if X ⊂ P

r
Fq

is

a smooth quasi-projective subscheme of dimension n, then for any d ∈ N satisfying

Cr,q deg(X)ζX

(
n+

1

2

)
<

q
d

max{n+1,p}
(
d

2k−1
n + 1

)
dn + dn+

2k−1
n + q

d
max{n+1,p}

,

there exist homogeneous polynomials f1, . . . , fk ∈ Fq[x0, . . . , xr] of degree d such
that X ∩ V(f1, . . . , fk) is smooth of dimension n − k. Moreover, if X is projective
and geometrically connected, then X∩V(f1, . . . , fk) is also geometrically connected.

Our proof of this theorem builds upon work of Bucur and Kedlaya [BK12], which
in part allows us to choose all of the hypersurfaces at once instead of going through
an inductive argument. We prove non-trivial bounds on the error terms and the
Euler product appearing in [BK12, Theorem 1.2], which allow us to deduce the
explicit bound appearing in Theorem B.

From this effective Bertini theorem over finite fields applied to abelian varieties,
we deduce Theorem A as follows: first we use Theorem B to produce a smooth
connected curve C on A whose degree is explicitly bounded and which arises as an
intersection C = A ∩ V (f1, . . . , fn−1). Then we use Proposition 2.1 to show that
Jac(C) covers A, and finally we use a classical theorem of Castelnuovo to bound
the genus of C.

2See Proposition 3.5 for a more precise statement, where the constant is explicitly stated.
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JACOBIANS COVERING ABELIAN VARIETIES 537

In the case when the abelian variety A is simple, the condition of A ∩
V(f1, . . . , fn−1) being smooth can be dropped, and this allows us to lower the
degree and genus bounds. To construct an explicit smooth curve whose Jacobian
dominates A, we just need a curve (not necessarily smooth or even reduced) given
by the intersection of A with hypersurfaces. Using recent work of the first author
and Erman, characterizing the probability of randomly choosing homogeneous poly-
nomials f1, . . . , fn−1 of degree d that intersect A in a (not necessarily smooth) curve
[BE, Theorem B, Proposition 5.1], we show that when A is simple, hypersurfaces
of smaller degree suffice. This results in the better bound seen in Theorem A.

Since we work with non-smooth curves in the case where A is simple, we cannot
use Castelnuovo’s bound for the genus. We thus prove a more general degree-genus
bound that holds for any connected, reduced curve. The key idea of this proof is
to combine a Hilbert function argument with the Gruson-Lazarsfeld-Peskine bound
on Castelnuovo-Mumford regularity of any such curve [GLP83,Gia06].

As an application of Theorem A, we show the existence of a smooth connected
curve with bounded genus whose Jacobian has an arbitrary number of copies of an
elliptic curve as isogeny factors.

Corollary 1.1. Let Fq be a finite field, and for any n ∈ N, there exists an explicit
constant Bn,q such that for any E, an elliptic curve over Fq, there exists a smooth
geometrically connected curve C of genus g ≤ Bn,q defined over Fq such that Jac(C)
admits En as an isogeny factor.

This paper is organized as follows. Section 2 gathers background results about
abelian varieties. In Section 3 we prove Theorem B. In Section 4 we use Theorem B
to prove the general statement in Theorem A. Section 5 concludes the proof of
Theorem A by handling the case of simple abelian varieties. Section 6 presents the
proof of Corollary 1.1.

1. Conventions

We let N = {1, 2, 3, . . .} be the natural numbers and let Z be the integers.
Throughout the paper, k will denote a field, and Fq will be a finite field of charac-
teristic p for some prime p > 0. By a curve over a field k, we refer to a complete
separated equidimensional scheme of finite type over k of dimension one. By equidi-
mensional we mean that all of the irreducible components have the same dimension
and that there are no embedded components. We will say a scheme X over a field
k is smooth if its structure morphism is smooth. We discuss the Jacobian variety
associated to a smooth connected curve C as defined in [Mil08, Section III.1, p. 86]
and we denote the Jacobian variety of such a curve C by Jac(C). By abelian variety
over a field k, we mean a geometrically reduced, separated, group scheme of finite
type over k that is both complete and geometrically connected [Mil08, Section I.1,
p. 8]. When discussing a polynomial ring k[x0, . . . , xr] over a field k, we will always
assume it has the standard N-grading where deg(xi) = 1 for all i.

2. Background on abelian varieties

Here we collect some classical results regarding abelian varieties, each adapted
from [Mil08, Section III].
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538 JULIETTE BRUCE AND WANLIN LI

Let A be an abelian variety and let C be a smooth connected curve together
with a map C → A. By the universal property of Jacobians, one has the following
diagram:

C Jac(C)

A

ι

π

where ι : C → Jac(C) is an Abel-Jacobi map for C. In general, the map π need
not be surjective. However, if the curve C arises as a complete intersection on
A — i.e., if there exist homogeneous polynomials f1, . . . , fn−1 on P

r
k such that

C = A∩V(f1, . . . , fn−1) — then the map π is surjective. This is the content of the
following proposition.

Proposition 2.1. Let A ⊂ P
r
k be an abelian variety of dimension n over a field

k. If f1, . . . , fn−1 ∈ k[x0, . . . , xr] are homogeneous polynomials such that C :=
A ∩ V(f1, . . . , fn−1) is a smooth geometrically connected curve, then the induced
map π : Jac(C) → A is surjective.

The case where the fi’s are linear forms is Theorem 10.1 in [Mil08, Section III],
and the key adaptation here is allowing hypersurfaces of higher degree. To do this,
we need the following lemma, which is adapted from Lemma 10.3 in [Mil08, Section
III].

Lemma 2.2. Let X ⊂ P
r
k be a projective subscheme of dimension ≥ 2 defined

over a field k, and let X ′ = X ∩ H be a hypersurface section of X. Let Y be a
geometrically normal, geometrically integral, projective scheme. If ψ : Y → X is a
finite map, then ψ−1(X ′) is geometrically connected.

Proof. Since the hypotheses are stable under base change, it is enough to assume
that k is algebraically closed and show that ψ−1(X ′) is connected. Since X ′ is
the restriction of an ample divisor on P

r
k to X, it remains ample. Since ψ is a

finite morphism, it is quasi-affine. Thus ψ−1(X ′) is the support of an ample divisor
[TS18, Lemma 0892]. Finally, since k is algebraically closed and Y is integral and
normal we may apply Corollary 7.9 of [Har77, Section III], which implies the desired
claim. �

Proof of Proposition 2.1. Consider the image of π, which we denote by A1. Com-
positing with a translation on A wouldn’t affect surjectivity of the map. Without
loss of generality, we assume π is a group homomorphism. Thus, A1 is an abelian
subvariety of A. Towards a contradiction, suppose that A1 �= A. If this were
the case, then there would exist an abelian subvariety A2 ⊂ A such that the map
φ : A1×A2 → A given by (a1, a2) 	→ a1+a2 would be an isogeny [Mil08, Proposition
I.10.1].

Now let m ∈ N be relatively prime to the characteristic of k, and consider the
map ψ: given by the composition of two isogenies

A1 ×A2 A1 ×A2 A

ψ

1×m φ
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JACOBIANS COVERING ABELIAN VARIETIES 539

Let proj : A1×A2 → A2 be the projection map. We wish to show that proj(ψ−1(C))
is equal to proj(ψ−1(O)), where O is the identity element of A. The key point
is that since C ⊂ A1 ⊂ A if φ(a1, a2) ∈ C, then a1 + a2 ∈ A1, implying that
a2 = (a1 + a2) − a1 is contained in A1. Phrased differently φ−1(C) is equal to
{(a1 − a2, a2) | a1 ∈ C, a2 ∈ A1 ∩ A2}. The equality now follows from the fact
that the kernel of φ is {(a,−a) | a ∈ A1 ∩A2}.

Since φ is an isogeny the kernel of φ, which is {(a,−a) | a ∈ A1 ∩ A2}, is finite.
Thus, A1∩A2 is a finite set, and moreover, A1∩A2 is non-empty since the identity
element of A is contained in A1∩A2. Asm is relatively prime to the characteristic of
our ground field, multiplication by m is a finite map of degree m2n where n is the
dimension of A2. Thus, proj(ψ−1(C)) is a finite set of size m2n|A1 ∩ A2| > 1,
which implies that ψ−1(C) is not geometrically connected. However, applying
Lemma 2.2 repeatedly shows that ψ−1(C) is geometrically connected, providing
a contradiction. So, we conclude that A1 = A and π is surjective. �

3. Effective Bertini theorem over finite fields

In this section we establish an effective Bertini theorem over finite fields, proving
Theorem B. This section also contains a technical version of Theorem B, Proposi-
tion 3.5, where all constants are explicitly stated.

A key ingredient in the proof of these results is recent work of Bucur and Kedlaya
[BK12] which characterizes the probability that the intersection of an n-dimensional
quasi-projective subscheme X with k randomly chosen hypersurfaces of given de-
grees is smooth of dimension n− k. While Bucur and Kedlaya’s result is not itself
effective, it does contain an explicit error term. We carefully analyze this error
term to produce an effective Bertini theorem.

Before stating their result and using it to prove Theorem B, we fix a bit of
notation. Let S = Fq[x0, . . . , xr] be the homogeneous coordinate ring of P

r
Fq

.

Given a tuple d = (d1, . . . , dk) ∈ N
k we set

Sd = Sd1
⊕ Sd2

⊕ · · · ⊕ Sdk
,

where Sdi
is the Fq-vector space of homogeneous polynomials of degree di in S.

Further, given an element f = (f1, . . . , fk) ∈ Sd we write V(f) for V(f1, . . . , fk) ⊂
P
r
Fq

. The probability that k uniformly chosen vectors in Fn
q are linearly independent

is denoted as

L(q, n, k) =

k−1∏
j=0

(
1− q−(n−j)

)
.

With this notation in hand we now state Bucur and Kedlaya’s result.

Theorem 3.1 ([BK12, Theorem 1.2]). Let X ⊂ P
r
Fq

be a smooth quasi-projective

subscheme of dimension n ≥ 0 over a finite field Fq of characteristic p. Choose an
integer k ∈ {1, . . . , n− 1}, a degree sequence d = (d1 ≤ d2 ≤ · · · ≤ dk), and set

Pd =

{
f ∈ Sd

∣∣∣∣ X ∩ V(f) has dimension n− k
and is smooth

}
.
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540 JULIETTE BRUCE AND WANLIN LI

Then ∣∣∣∣∣#Pd

#Sd
−
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))∣∣∣∣∣
≤ 2n+2 deg(X)kq−δ + (r + 1)krn deg(X)(n+ 1)dnkq

−d1
max{n+1,p} ,(1)

where

δ = (2k − 1)

(
1 +

⌊
1

n
logq

d1 + 1

(n+ 1)2n+1

⌋)
.

To prove Theorem B, we need to control the Euler product appearing in the
above theorem. In general this is difficult. For example, [BK12, p. 544] presents
numerical evidence suggesting it cannot be interpreted as a zeta function. But we
are able to provide a lower bound for it in terms of a zeta function value.

Proposition 3.2. Let X ⊂ P
r
Fq

be a smooth quasi-projective subscheme of dimen-

sion n ≥ 0 defined over a finite field Fq. Fix 1 ≤ k ≤ n− 1. If q ≥ 3, then

ζX

(
n+

1

2

)−1

≤
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))
,

and if q = 2, then

2−#X(F2)ζX

(
n+

1

2

)−1

≤
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))
.

To prove this proposition, we need two lemmas.

Lemma 3.3. If {ai}ti=1 is a sequence of real numbers such that 0 < ai < 1, then

1−
t∑

i=1

ai ≤
t∏

i=1

(1− ai) < 1.

Proof. The upper bound is immediate from the fact that 0 < 1 − ai < 1 for all i.
For the lower bound we proceed by induction on t with the case when t = 1 being
clear. In the general case by induction we assume that

1−
t−1∑
i=1

ai ≤
t−1∏
i=1

(1− ai) ,

and multiplying both sides by (1− at) gives

1−
t∑

i=1

ai ≤ 1−
t∑

i=1

ai + at

(
t−1∑
i=1

ai

)
=

(
1−

t−1∑
i=1

ai

)
(1− at) ≤

t∏
i=1

(1− ai) ,

which completes the inductive step. �

Lemma 3.4. Fix 1 ≤ k ≤ n − 1. If either q ≥ 3 and t ≥ 1 or q = 2 and t > 1,
then

1− q−(n−k+ 1
2 )t ≤ L

(
qt, n, k

)
.

Moreover, if q = 2 and t = 1 we have

1

2

(
1− 2−(n−k+ 1

2 )
)
≤ L (2, n, k) .
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Proof. Combining the definition of L (qt, n, k) with Lemma 3.3 we know that

1−
k−1∑
i=0

q−(n−i)t ≤
k−1∏
i=0

(
1− q−(n−i)t

)
= L

(
qt, n, k

)
.

Since the left-hand side is a geometric sum we may rewrite this inequality as

1− q−(n−k+1)t − q−(n+1)t

1− q−t
= 1−

k−1∑
i=0

q−(n−i)t ≤ L
(
qt, n, k

)
,

which we may further simplify to

1− q−(n−k+1)t

1− q−t
≤ 1− q−(n−k+1)t − q−(n+1)t

1− q−t
≤ L

(
qt, n, k

)
.

Now we shift to showing that in the cases when q ≥ 3 and t ≥ 1 or q = 2 and
t > 1,

1− q−(n−k+ 1
2 )t ≤ 1− q−(n−k+1)t

1− q−t
.

Rearranging the terms, one sees the above inequality is equivalent to

(2)
q−

t
2

1− q−t
=

q−(n−k+1)q(n−k+ 1
2 )t

1− q−t
≤ 1.

Notice the above inequality is equivalent to qt − q
t
2 − 1 ≥ 0. Since x2 − x− 1 ≥ 0

for all x ≥ 1
2 (1 +

√
5) it is thus enough to have q

t
2 ≥ 1

2 (1 +
√
5); however, this is

true since q ≥ 3 and t ≥ 1, and so q
t
2 ≥

√
3 > 1

2 (1 +
√
5).

Finally we focus on the remaining case, when q = 2 and t = 1. From our work
above we know that

1− q−(n−k+1)t

1− q−t
≤ 1− q−(n−k+1)t − q−(n+1)t

1− q−t
≤ L

(
qt, n, k

)
,

and so it is enough to show that

1

2

(
1− 2−(n−k+ 1

2 )
)
≤ 1− 2−(n−k) = 1− 2−(n−k+1)

1− 2−1
.

Rearranging the terms, this inequality is equivalent to

1 ≤ 2n−1−k + 2−
3
2 .

The right-hand side is minimized when k = n − 1, in which case it is equal to
1 + 2−

3
2 , and so the desired inequality holds for all 1 ≤ k ≤ n− 1. �

Proof of Proposition 3.2. By Lemma 3.4, if q ≥ 3, then

ζX

(
n+

1

2

)−1

=
∏
x∈X

(
1− q−(n+

1
2 ) deg(x)

)

=
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)

(
1− q−(n−k+ 1

2 ) deg(x)
))

≤
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))
.
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542 JULIETTE BRUCE AND WANLIN LI

Similarly in the q = 2 case for points x ∈ X of degree not one Lemma 3.4 tells us
that

∏
x∈X

deg(x) �=1

(
1− q−(n+

1
2 ) deg(x)

)
≤

∏
x∈X

deg(x) �=1

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))
.

(3)

On the other hand, for points x ∈ X of degree one Lemma 3.4 implies that∏
x∈X

deg(x)=1

1

2

(
1− q−(n+

1
2 )
)

(4)

=
∏
x∈X

deg(x)=1

(
1

2
− 1

2
q−k deg(x) +

1

2
q−k deg(x)

(
1− q−(n−k+ 1

2 ) deg(x)
))

≤
∏
x∈X

deg(x)=1

(
1− q−k deg(x) +

1

2
q−k deg(x)

(
1− q−(n−k+ 1

2 ) deg(x)
))

(5)

≤
∏
x∈X

deg(x)=1

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))
.(6)

Multiplying inequality (3) and inequality (4) gives the result in the case when
q = 2. �

We now prove the following proposition, which is a more precise version of The-
orem B.

Proposition 3.5. Let X ⊂ P
r
Fq

be a smooth quasi-projective subscheme of dimen-

sion n ≥ 2 defined over a finite field Fq of characteristic p. Fix 1 ≤ k ≤ n − 1.
Under either of the following circumstances:

(1) q ≥ 3, and d ∈ N satisfies the inequality

k2n+2k+1+ 2k−1
n (n+ 1)1+

2k−1
n (r + 1)rn degXζX

(
n+

1

2

)

<
q

d
max{n+1,p}

(
d

2k−1
n + 1

)
dn + dn+

2k−1
n + q

d
max{n+1,p}

,(7)

(2) or q = 2, and d ∈ N satisfies the inequality

k2n+2k+1+ 2k−1
n +#X(F2)(n+ 1)1+

2k−1
n (r + 1)rn degXζX

(
n+

1

2

)

<
q

d
max{n+1,p}

(
d

2k−1
n + 1

)
dn + dn+

2k−1
n + q

d
max{n+1,p}

,

there exist homogeneous polynomials f1, . . . , fk ∈ Fq[x0, . . . , xr] of degree d such
that X ∩ V (f1, . . . , fk) is smooth of dimension n− k. Moreover, if X is projective
and geometrically connected, then X∩V(f1, . . . , fk) is also geometrically connected.
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Proof. Setting d = d1 = d2 · · · = dk we wish to show that #Pd

#Sd
> 0, which since

#Pd

#Sd
≥ 0 is equivalent to showing that #Pd

#Sd
�= 0. By Theorem 3.1,∣∣∣∣∣#Pd

#Sd
−
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))∣∣∣∣∣
≤ 2n+2 deg(X)kq−δ + (r + 1)krn deg(X)(n+ 1)dnkq

−d1
max{n+1,p} ,

and so to show that #Pd

#Sd
�= 0 it is enough to show that

2n+2 deg(X)kq−δ + (r + 1)krn deg(X)(n+ 1)dnq
−d

max{n+1,p}

<
∏
x∈X

(
1− q−k deg(x) + q−k deg(x)L

(
qdeg(x), n, k

))
.(8)

Using Proposition 3.2 to bound the right-hand side of the above inequality it is
enough to show that

2n+2 deg(X)kq−δ+(r + 1)krn deg(X)(n+ 1)dnq
−d

max{n+1,p} < ζX

(
n+

1

2

)−1

(q �= 2),

2n+2 deg(X)kq−δ+(r+1)krn deg(X)(n+1)dnq
−d

max{n+1,p} <2−#X(F2)ζX

(
n+

1

2

)−1

(q = 2).

(9)

We now proceed by bounding the left-hand side of inequality (9). Since r, k,
and n are positive constants and r ≥ 1, the left-hand side of inequality (9) satisfies
the following:

2n+2 deg(X)kq−δ + (r + 1)krn deg(X)(n+ 1)dnq
−d

max{n+1,p}

≤ k2n+2(n+ 1)(r + 1)rn degX
[
q−δ + dnq

−d
max{n+1,p}

]
.

(10)

With δ as in Theorem 3.1 we may bound δ as follows:

2k − 1

n
logq

d+ 1

(n+ 1)2n+1
= (2k − 1)

(
1 +

1

n
logq

d+ 1

(n+ 1)2n+1
− 1

)

≤ (2k − 1)

(
1 +

⌊
1

n
logq

d+ 1

(n+ 1)2n+1

⌋)
= δ.

This allows us to bound q−δ from above, giving an upper bound for the right-hand
side of inequality (10):

k2n+2(n+ 1)(r + 1)rn degX
[
q−δ + dnq

−d
max{n+1,p}

]
≤ k2n+2(n+ 1)(r + 1)rn degX

[(
(n+1)2n+1

d+1

) 2k−1
n

+ dnq
−d

max{n+1,p}

]
.

(11)

Since n is a positive constant, we may give an upper bound to the right-hand side

of inequality (11) by “pulling out” ((n+ 1)2n+1)
2k−1

n . Further since d ≥ 1 we may
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bound (d+1)
2k−1

n below by d
2k−1

n +1. This allows us to bound the right-hand side
of inequality (11) from above by the following:

(12) k2n+2k+1+ 2k−1
n (n+ 1)1+

2k−1
n (r + 1)rn degX

⎡
⎣dn + dn+

2k−1
n + q

d
max{n+1,p}

q
d

max{n+1,p}
(
d

2k−1
n + 1

)
⎤
⎦ .

Combining inequalities (10), (11), and (12) we get our final upper bound for the
left-hand side of inequality (9):

2n+2 degXkq−δ + (r + 1)krn degX(n+ 1)dnq
−d

max{n+1,p}

≤ k2n+2k+1+ 2k−1
n (n+ 1)1+

2k−1
n (r + 1)rn degX

⎡
⎣dn+ dn+

2k−1
n + q

d
max{n+1,p}

q
d

max{n+1,p}
(
d

2k−1
n + 1

)
⎤
⎦.

(13)

So by inequalities (9) and (13) if d ∈ N satisfies

k2n+2k+1+ 2k−1
n (n+ 1)1+

2k−1
n (r + 1)rn degX

⎡
⎣dn + dn+

2k−1
n + q

d
max{n+1,p}

q
d

max{n+1,p}
(
d

2k−1
n + 1

)
⎤
⎦

< ζX

(
n+

1

2

)−1

(q �= 2),

k2n+2k+1+ 2k−1
n (n+ 1)1+

2k−1
n (r + 1)rn degX

⎡
⎣dn + dn+

2k−1
n + q

d
max{n+1,p}

q
d

max{n+1,p}
(
d

2k−1
n + 1

)
⎤
⎦

< 2−#X(F2)ζX

(
n+

1

2

)−1

(q = 2),

then such d also satisfies inequality (8), meaning that #Pd

#Sd
> 0.

Finally, since X is smooth it is geometrically reduced [TS18, Lemma 056T]. In
particular, if X is geometrically connected, then it is geometrically integral. Thus,
if X is also projective, then since n ≥ 2 and n − k ≥ 1 we may inductively apply
[Har77, Section III, Corollary 7.9] to deduce that X∩V (f1, . . . , fk) is geometrically
connected. �

Remark 3.6. The inequalities appearing in Proposition 3.5 are eventually true for
d sufficiently large since the right-hand sides tend to infinity as d → ∞, while the
left-hand side is independent of d.

Proof of Theorem B. Since #X (F2) ≤ #P
r(F2) = 2r+1−1, we can bound #X(F2)

in terms of just r. Thus, by Proposition 3.5 if we let

Cr,q =

{
23r+1(r + 1)5rr if q �= 2,

23r+2r+1

(r + 1)5rr if q = 2,

then there exist homogeneous polynomials f1, . . . , fk ∈ Fq[x0, . . . , xr] of degree d
such that X ∩ V (f1, . . . , fk) is smooth of dimension n − k, which is geometrically
connected if X is projective and geometrically connected. �

Remark 3.7. Regarding Theorem B, Poonen has pointed out to us, in personal
communication, that by using a noetherian induction argument, one can show the
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existence of a bound dependent solely on r and the degree of X. While such a
bound would be ineffective, it would be independent of q and n.

4. Smooth curves of bounded genus and degree

We now bound the degree and genus of the smooth curves C ⊂ X we constructed
in the previous section.

Proposition 4.1. Let X ⊂ P
r
Fq

be a smooth projective subscheme of dimension

n ≥ 2 defined over a finite field Fq of characteristic p. Under either of the following
circumstances:

(1) q ≥ 3, and d ∈ N satisfies the inequality

23n+3 deg(X)n4rn+1ζX

(
n+

1

2

)
≤

q
d

max{n+1,p}
(
d

1
2 + 1

)
dn+2 + dn + q

d
max{n+1,p}

,

(2) or q = 2, and d ∈ N satisfies the inequality

23n+#X(F2)+3 deg(X)n4rn+1ζX

(
n+

1

2

)
≤

q
d

max{n+1,p}
(
d

1
2 + 1

)
dn+2 + dn + q

d
max{n+1,p}

,

there exist homogeneous polynomials f1, . . . , fn−1 ∈ Fq[x0, . . . , xr] of degree d such
that X ∩V (f1, . . . , fn−1) is a smooth curve and deg(C) = deg(X)dn−1. Moreover,
if X is projective and geometrically connected, then X ∩ V(f1, . . . , fn−1) is also
geometrically connected.

Proof. As n, r ≥ 1 note that (n− 1)(n+ 1)3−
3
n (r + 1)rn ≤ 4n4rn+1, and so

23n−
3
n+1 deg(X)(n− 1)(n+ 1)3−

3
n (r + 1)rnζX

(
n+

1

2

)

≤ 23n+3 deg(X)n4rn+1ζX

(
n+

1

2

)
,

23n−
3
n+#X(F2)+1 deg(X)(n− 1)(n+ 1)3−

3
n (r + 1)rnζX

(
n+

1

2

)

≤ 23n+#X(F2)+3 deg(X)n4rn+1ζX

(
n+

1

2

)
.

Moreover, we see that

q
d

max{n+1,p}
(
d

1
2 + 1

)
dn+2 + dn + q

d
max{n+1,p}

≤
q

d
max{n+1,p}

(
d2−

3
n + 1

)
dn + dn+2− 3

n + q
d

max{n+1,p}
.

Thus, given d ∈ N as in the statement of this proposition, then applying Proposi-
tion 3.5 in the case when k = n−1, there exist the desired homogeneous polynomials
f1, . . . , fn−1 ∈ Fq[x0, . . . , xr] of degree d such that X ∩V (f1, . . . , fn−1) is a smooth
curve. Further, Bezout’s theorem [Ful98, Proposition 8.4] implies that

deg(C) = deg(X)

n−1∏
i=1

deg(fi) = deg(X)dn−1.

Finally, as stated in Proposition 3.5 if X is projective and geometrically connected,
then X ∩ V (f1, . . . , fn−1) is geometrically connected. �
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To show the existence of smooth connected curves with bounded genus, we use
a classical theorem of Castelnuovo which gives an upper bound on the genus of an
irreducible, smooth, non-degenerate curve X ⊂ P

r in terms of degX and r. (Recall
that a scheme X ⊂ P

r is non-degenerate if it is not contained in any hyperplane.)

Proposition 4.2. Let X ⊂ P
r
Fq

be a smooth non-degenerate projective geomet-

rically connected subscheme of dimension n ≥ 2 defined over a finite field Fq of
characteristic p. If d ≥ 2 is a natural number satisfying the condition in Proposi-
tion 4.1, then there exists a smooth geometrically connected non-degenerate curve
C ⊂ X such that

g(C) ≤
⌊
deg(X)dn−1 − 1

r − 1

⌋⎛⎝deg(X)dn−1 −

⌊
deg(X)dn−1−1

r−1

⌋
+ 1

2
(r − 1)− 1

⎞
⎠ .

Proof. By Proposition 4.1, for such d ≥ 2 there exists a smooth geometrically
connected curve C ⊂ X with deg(C) = deg(X)dn−1. To show that C is non-
degenerate it is enough, by induction, to show that X ∩ V(f1) is non-degenerate.
If X ∩ V(f1) were degenerate and so contained in a linear subspace L ⊂ P

r
Fq

, then

X ∩V(f1) ⊂ X ∩L, and since X itself is non-degenerate both X ∩V(f1) and X ∩L
would have dimension n−1. However, by Bezout’s theorem [Ful98, Proposition 8.4]
the degree of X ∩ V(f1) is equal to deg(X)d, which since d ≥ 2 is strictly larger
than deg(X ∩ L) = deg(X) gives a contradiction. Finally, applying Castelnuovo’s
genus bound [Har81, p. 40] to C gives the stated result. �

We conclude this section with the proof of the statement in Theorem A for
general abelian varieties.

Proof of Theorem A (General case). Since n ≤ r by Propositions 2.1 and 4.2, it is
enough to show that if q = 2, then #A (F2) is bounded by a constant depending
only on n and r. This follows immediately from the Weil bounds [AH16, p. 58],

which states that #A (F2) is bounded above by (3+2
√
2)n. Thus, the result follows

with Cr,q defined as

Cr,q =

{
23r+3rr+5 if q �= 2,

23r+3+(3+2
√
2)rrr+5 if q = 2.

�

Remark 4.3. Notice that the dependence of Cr,q on q is really only dependence on
whether or not q = 2. Thus, one can easily make Cr,q independent of q by adding
the appropriate factors of 2.

5. The case when A is simple

When A is a simple abelian variety, our general bound can be simplified as was
stated in the second part of Theorem A. This is possible because when A is simple,
almost any curve on A, even if it is reducible, non-reduced, or non-smooth, gives
rise to a covering of A by a Jacobian.

In particular, suppose that C ⊂ A is any curve on A. By taking an irreducible
component of C considered with the reduced subscheme structure without loss
of generality we may assume that C is irreducible and reduced. Now taking the
normalization of this irreducible reduced curve C results in a smooth irreducible
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curve C̃, which maps non-trivially to A. The universal property of Jacobian vari-
eties in turn gives a non-constant map Jac(C̃) → A, and as A is simple this map
must be surjective.

Thus, in the simple case, constructing curves whose Jacobians dominate A is
easier. One only needs the existence of a (possibly non-smooth, non-reduced, or
reducible) curve C contained in A. So it is sufficient to find homogeneous poly-
nomials f1, . . . , fn−1 which cut out any curve on A. This allows us to choose the
f1, . . . , fn−1 to be of smaller degree, improving the bound.

Proposition 5.1. Let X ⊂ P
r
Fq

be a smooth projective subscheme of dimension n

defined over a finite field Fq. If d ∈ N satisfies the inequality

deg(X) ≤ (d− 1)q
1
2 (d+1)(d+2)

dn−1 − 1
,

then there exist homogeneous polynomials f1, . . . , fn−1 ∈ Fq[x0, . . . , xr] of degree d
such that C = X ∩ V (f1, . . . , fn−1) is a curve and deg(C) = deg(X)dn−1.

Proof. By combining the given inequality on d with Proposition 5.1 of [BE] in
the case when k = n − 2 we can find homogeneous polynomials f1, . . . , fn−1 of
degree d where X ∩ V (f1, . . . , fn−1) has dimension 1. Bezout’s theorem [Ful98,

Proposition 8.4] then gives deg(C) = deg(X)
∏n−1

i=1 deg(fi) = deg(X)dn−1. �

To finish the proof of Theorem A, we must be able to bound the genus of the
normalization C̃ in terms of the degree of C. As the genus of C̃ is bounded above
by the arithmetic genus of C [Har77, Exercise IV.1.8] it is enough to bound the
arithmetic genus of C. (We write pa(C) for the arithmetic genus of a curve C.)

As before, the idea is to use a degree-genus bound. However, since the curves
arising in Proposition 5.1 need not be smooth we cannot use Castelnuovo’s genus
bound. Instead we prove a less sharp but more general bound by combining a
lower bound on the Hilbert function/polynomial with a bound on the Castelnuovo-
Mumford regularity.

Lemma 5.2. If C ⊂ P
r
k is a curve with homogeneous coordinate ring R, then

dimRd ≥ d+ 1 for any d ∈ N.

Proof. Since base change does not affect the Hilbert function, without loss of gen-
erality, we may suppose that k is algebraically closed. Since k is infinite, there
exists a linear form � ∈ R, which gives rise to the short exact sequence

0 R(−1) R R/〈�〉 0.·�

Using the additivity of the Hilbert function, we see that dimRd=
∑d

k=0 dim (R/〈�〉)k
for any d ∈ N, and since R/〈�〉 is one-dimensional, the result now follows by noting
that dim(R/〈�〉)k ≥ 1 for all k ≥ 0. �

With this lemma in hand, we prove a more general genus-degree bound that
applies to all geometrically connected reduced equidimensional curves.

Lemma 5.3. If C ⊂ P
r
k is a geometrically connected reduced curve, then

pa(C) ≤ deg(C)(deg(C) + 1)− 2.
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Proof. Since the hypotheses are stable under base change, without loss of generality,
we may suppose that k is algebraically closed and that C is connected. Let R be
the homogeneous coordinate ring of the curve C. The Hilbert polynomial PC(t)
of the curve C is equal to deg(C)t + 1 − pa(C). For any t ≥ reg(C), the Hilbert
function and Hilbert polynomial agree [Eis05, Theorem 4.2]. Thus, if t ≥ reg(C),
then by Lemma 5.2

t+ 1 ≤ dimRt = PC(t) = deg(C)t+ 1− pa(C).

Results of Giaimo imply that reg(C) ≤ deg(C)+2 [Gia06]. Plugging t = deg(C)+2
into the above inequality yields

deg(C) + 3 ≤ dimRdeg(C)+2 = deg(C) (deg(C) + 2) + 1− pa(C).

The result now follows from rearranging the above inequality. �

Remark 5.4. Not only does the bound from Lemma 5.3 apply to non-smooth curves,
it also applies to degenerate curves, i.e., curves lying in a hyperplane in P

r
k. In fact,

such curves attain the maximal values, as any degree d planar curve will have the
maximal possible arithmetic genus.

Finally, we conclude the proof of Theorem A.

Proof of Theorem A (Simple case). By Proposition 5.1, there exist homogeneous
polynomials f1, . . . , fn−1 ∈ Fq[x0, x1, . . . , xr] of degree d such that C = A ∩
V (f1, f2, . . . , fn−1) is a curve with deg(C) = deg(A)dn−1. Let C ′

red ⊂ C be an
irreducible component of C considered with the reduced subscheme structure. As
noted in the beginning of this section, if C̃ ′

red is the normalization of C ′
red, then

since A is simple the map Jac(C̃ ′
red) → A coming from the universal property of

Jacobians is surjective. Hence it is enough to bound the genus of C̃ ′
red.

Towards this, note that deg(C ′
red) ≤ deg(C), and so deg(C ′

red) ≤ deg(A)dn−1.
Applying Lemma 5.3 and Exercise IV.1.8 in [Har77] to C ′

red, we see that

pa

(
C̃ ′

red

)
≤ pa (C

′
red) ≤ deg(A)2d2n−2 + deg(A)dn−1 − 2.

Since C̃ ′
red is an irreducible smooth curve, its geometric genus is equal to its arith-

metic genus, and so

g
(
C̃ ′

red

)
= pa

(
C̃ ′

red

)
≤ deg(A)2d2n−2 + deg(A)dn−1 − 2.

�

6. Application

As an application of Theorem A, we show the existence of abelian varieties of
the form En×A for n ∈ N, where E is an elliptic curve, in the Torelli locus. Recall
that the Torelli locus Tg is the image of the Torelli map

Mg Ag

C Jac(C)

between the moduli space of (geometrically irreducible, complete, smooth) curves
of genus g and the moduli space of principally polarized abelian varieties of dimen-
sion g.
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Since the dimension of Mg is 3g − 3 and the dimension of Ag is g(g + 1)/2,
the Torelli locus is a proper subscheme of Ag for g ≥ 4. In general describing
this locus is hard, and relatively little is known. For example, given a principally
polarized abelian variety of dimension greater than or equal to 4 over a finite field,
it is difficult to determine whether it can be realized as the Jacobian variety of a
smooth curve.

Further, since the codimension of Tg grows with g, for any given stratification
of Ag, we expect the Torelli locus to intersect only the relatively generic strata.
For example, if we fix an elliptic curve E over Fq, then we may stratify Ag by
the number of copies of E each abelian variety has as isogeny factors. That is to
say, each stratum has the form {En} × Ag−n for 0 ≤ n ≤ g. Then we expect the
intersection Tg ∩ {En} × Ag−n to often be empty for larger n. In particular, we
expect the Jacobian of some smooth genus g curve over Fq to have En as an isogeny
factor only if n is small relative to g. This is supported by the results in [EHR14].

Proposition 6.1 ([EHR14, Corollary 1.3]). Let E be an elliptic curve over a finite
field Fq of characteristic p and n ∈ N. Let C be a smooth curve of genus g defined
over Fq. If En is an isogeny factor of Jac(C), then

g −
√

log log g

6 log q
≥ n.

Proof. By Corollary 1.3 in [EHR14], Jac(C) has a simple factor A with dimension

at least
√

log log g
6 log q . Thus, the dimension of the isogeny factor which decomposes as

copies of E is at most g − dimA. �

The previous proposition can be viewed as a lower bound for the genus of curves
with a prescribed isogeny factor for their Jacobians. Phrased differently, it says that
for g less than the explicit bound in the proposition, the intersection of {En}×Ag−n

and Tg is empty.
On the other hand, our Theorem A can be used to construct curves with a

prescribed isogeny factor with bounded genus. In particular, Corollary 1.1 implies
that while unlikely, there does exist g ≤ Bn,q such that {En}×Ag−n intersects Tg.

Proof of Corollary 1.1. LetE ⊂ P
2 be an elliptic curve defined over Fq and consider

the abelian variety En with the polarization induced by divisor En−1×{O}+En−2×
{O} ×E + · · ·+ {O} ×En−1, which gives an embedding En ⊂ P

r. By Theorem A
there exists a smooth geometrically connected curve C defined over Fq whose genus
is explicitly bounded in terms of n, deg(En), ζEn(n + 1

2 ), q, and r such that the
Jacobian of C maps surjectively onto En. The surjectivity of the map Jac(C) → En

implies that Jac(C) admits a factor isogenous to En, and thus, it is enough to show
that we can remove the dependence on E from the genus on C, i.e., bound the
terms deg(En), ζEn(n + 1

2 ) and the dimension of the ambient projective space in
terms of just n and q.

Note that since E is embedded in P
2 with degree 3, using the Segre embedding,

En is embedded in P
3n−1 with degree 3nn!. Further, using Weil conjectures [Mil08,

Corollary II.1.5] one can show that

ζEn

(
n+

1

2

)
≤
(

1+
√
q

1− 1√
q

)2n−1

.
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With this, the genus bound for C given by Theorem A may be rewritten indepen-
dently of E. We may thus take Bn,q to equal the resulting bound. �

Remark 6.2. Recall the a number of an abelian variety A over a field k of charac-
teristic p > 0 is defined as dimk̄ Hom(αp, A[p]), where αp = Speck[x]/〈xp〉. The
previous corollary allows one to show the existence of Jacobian varieties over Fq of
bounded dimension with an a number at least n.

In particular, if in Corollary 1.1 we take E to be a supersingular elliptic curve,
then with C as in the corollary the a number of Jac(C) is at least n. Previous
results in this direction (see [Pri]) mainly come from constructing special families
of curves over Fp, thus only provide existence over algebraically closed fields.
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