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ABSTRACT
We formulate several conjectures which shed light on the structure of Veronese syzygies of projective
spaces. These conjectures are motivated by experimental data that we derived from a high-speed
high-throughput computation of multigraded Betti numbers based on numerical linear algebra.

Acentral open question in the study of syzygies is to deter-
mine the Betti table of Pn under the d-uple Veronese
embedding.While the case n = 1 is well understood—the
resolution is an Eagon–Northcott complex – even the case
n = 2 is wide open. In this article, we formulate several
conjectures which shed light on the structure of Veronese
syzygies of projective spaces. For instance, Conjecture 6.1
predicts the most dominant torus (or Schur functor)
weights that will arise in each entry of the Betti table of Pn

under any d-uple embedding. Our conjectures are based
on experimental data gathered using new techniques for
computing syzygies of Veronese embeddings of P2. These
techniques are based upon the use of numerical linear
algebra and distributed computation.

For a fixed n, let S = C[x0, x1, . . . , xn] be the poly-
nomial ring with the standard grading. We are primarily
interested in syzygies of the dth Veronese subring of S,
which we denote S(0; d) := S(d) = ⊕i∈ZSdi. We consider
S(0; d) as an R-module, where R = Sym(Sd ) is the sym-
metric algebra on the vector space Sd . Geometrically, this
corresponds to computing the syzygies of Pn under the
d-uple embedding Pn → P(n+d

d )−1.
Since Green’s landmark [Green 84a], the syzygies of a

variety are often studied in parallel with the syzygies of the
other line bundles on the variety, as this provides a unify-
ing perspective (see also [Green 84b, Theorem 2.2], [Ein
and Lazarsfeld 93, Theorem 2], [Ein and Lazarsfeld 12,
Theorem 4.1]). Accordingly, we set S(b; d) := ⊕i∈ZSdi+b
as an R-module; this is the graded R-module associated to
the pushforward ofOPn (b) under the d-uple embedding.

We analyze the Betti numbers of S(b; d), as well as
multigraded and equivariant refinements. We write

Kp,q(P
n, b; d) = TorRp(S(b; d),C)p+q = Cβp,p+q(P

n,b;d).

CONTACT Juliette Bruce juliette.bruce@math.wisc.edu Department of Mathematics, University of Wisconsin, Madison, WI, USA.

Thus βp,p+q(P
n, b; d) denotes the vector space dimension

of Kp,q(P
n, b; d). The natural linear action of GLn+1(C)

on S induces an action on Kp,q(P
n, b; d), and so we can

decompose this as a direct sum of Schur functors of total
weight d(p+ q) + b i.e.

Kp,q(P
n, b; d) =

⊕
λ of weight
d(p+q)+b

Sλ(C
n+1)⊕mλ ,

where Sλ is the Schur functor corresponding to the par-
tition λ [Fulton and Harris 91, p. 76]. This is the Schur
decomposition of Kp,q(P

n, b; d), and it is the most com-
pact way to encode the syzygies. Specializing to the
action of (C∗)n+1 gives a decomposition of Kp,q(P

n, b; d)

into a sum of Zn+1-graded vector spaces of total weight
d(p+ q) + b. Specifically, writing C(−a) for the vec-
tor space C together with the (C∗)n+1-action given by
(λ0, λ1, . . . , λn) · μ = λ

a0
0 λ

a1
1 · · · λan

n μ we have

Kp,q(P
n, b; d) =

⊕
a∈Zn+1

|a|=d(p+q)+b

C(−a)⊕βp,a(P
n,b;d)

as Zn+1-graded vector spaces, or equivalently as (C∗)n+1

representations. This is referred to as the multigraded
decomposition of Kp,q(P

n, b; d).
We are motivated by three main questions. The most

ambitious goal is to provide a full description of the Betti
table of every Veronese embedding in terms of Schur
modules.

Question 0.1 (Schur Modules). Compute the Schur mod-
ule decomposition of Kp,q(P

n, b; d).

Almost nothing is known, or even conjectured, about
this question, even in the case of P2. Our most significant
conjecture provides a first step towards an answer to this
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question. Specifically, Conjecture 6.1 proposes an explicit
prediction for the Schur modules Sλ ⊆ Kp,q(P

n, b; d)

with the most dominant weights.
Our second question comes from Ein and Lazars-

feld’s [Ein and Lazarsfeld 12, Conjecture 7.5] and is related
tomore classical questions aboutGreen’sNp-condition for
varieties [Green 84a, Ein and Lazarsfeld 93]:

Question 0.2 (Vanishing). When is Kp,q(P
n, b; d) = 0?

Our Conjecture 6.1 would also imply [Ein and
Lazarsfeld 12, Conjecture 7.5], and thus it offers a new
perspective on Question 0.2. Conjecture 6.1 is based
on a construction of monomial syzygies, introduced
in [Ein et al. 16]. Our new data suggest a surprisingly
tight correspondence between the dominant weights of
Kp,q(P

n, b; d) and the monomial syzygies constructed
in [Ein et al. 16], and that there is much more to be
understood from this simple monomial construction.

Our third question is inspired by Ein, Erman, and
Lazarsfeld’s conjecture that each row of these Betti
tables converges to a normal distribution [Ein et al. 15,
Conjecture B].

Question 0.3 (Quantitative Behavior). Fix n, q and b.
1. Can one provide any reasonable quantitative

description or bounds on Kp,q(P
n, b; d), either for

a fixed d or as d → ∞?
2. More specifically, does the function p �→

dimKp,q(P
n, b; d), when appropriately scaled,

converge to a normal distribution as d → ∞?

We provide some of the first evidence for the normally
distributed behavior conjectured in [Ein et al. 15, Conjec-
ture B]—see Figure 1 and Section 6.2

Additionally, we produce an array of new conjectures
related to Questions 0.1 and 0.3, including conjectures
on: Boij–Söderberg coefficients; the number of (distinct)
Schur modules appearing in Kp,q(P

n, b; d); and a Schur
functor interpretation of the conjecture of [Castryck
et al. XX, Section 8.3]. Our conjectures are based on
new experimental data about the Kp,q(P

2, b; d) that
arose from large-scale, systematic computations. Taken
together, these new conjectures sharpen our understand-
ing of Veronese syzygies and provide tangible projects to
explore.

Figure . Plots of p �→ dim Kp,1(0; d) for d = 4, 5, and  suggest
that the Betti numbers of the quadratic strand of the Veronese
embeddings of P2 converge toward a normal distribution as d →
∞.

We computed the Kp,q(P
2, b; d) spaces for all p, q and

essentially1 all 0 ≤ b ≤ d ≤ 6, as well as the correspond-
ing Schur module decompositions and multigraded
Hilbert series. For comparison: our Macaulay2 compu-
tations did not terminate for d = 5 and b = 0; this case,
including multigraded decompositions, was recently
computed by [Greco andMartino 16]; and the case d = 6
and b = 0, including multigraded decompositions, was
computed even more recently [Castryck et al. XX]. The
main contribution of our experimental data is thus its
comprehensiveness, as we include the pushforward of
other line bundles, the Schur functor decompositions,
and more.

Our computation is not based on new mathematical
ideas, but rather in the synthesis of known results and the
coordinated execution of many elementary steps. Since
Betti numbers are Tor groups, they can be computed in
twoways. The standardmethod is to use symbolic algebra
algorithms to compute a minimal free resolution, and to
derive the Betti table from this resolution [Eisenbud et al.
02, Chapter 2]. This method is quite computationally
intensive and does not terminate for d ≥ 5.

A second method is to compute the cohomology of
the Koszul complex, which reduces the computation of
these Tor groups to linear algebra (see Section 2 below).
Despite this reduction long being known we are aware
of only one large-scale effort at using it to compute Betti
numbers [Castryck et al. XX]. This is likely because, even
for relatively simple cases, the problem remains quite
complicated; the matrices quickly become massive and
numerous.

The crux of our technique is the use of high-
speed high-throughput computing to compute multi-
graded Betti numbers. This allows us to compute each
multigraded Betti number in parallel, relying on numer-
ical linear algebra algorithms, in particular an LU-
decomposition algorithm [Gill et al. 87]. These algorithms
are numerical in nature, and so rounding errorsmay creep
in. However, our primary interest is in the testing and
development of conjectures, so we do not require the pre-
cision of symbolic computation.Moreover, as discussed in
Section 5, we can often correct for minor errors through
a post-processing step, which converts the multigraded
decomposition into the Schur functor decomposition.

We have made our underlying experimental data pub-
lic in several formats. This includes a public databases:
https://syzygydata.com where the results of all computa-
tions have been presented and organized. It also includes

 While a few multigraded entries for d = 6 and b = 4, 5 are missing, we also
produced some data for d = 7, 8. The computations related to this work will
continue: our available hardware was recently upgraded, and we reimple-
mented one of our core algorithms, with the hope of addressing remaining
gaps and generating more data for d > 6.
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a Macaulay2 package (in preparation) that incorporates
the output of all computations. Our goal is to make our
data readily accessible to others in hope of spurring
further work on Veronese syzygies.

This article is organized as follows. Section 1 provides
background and notation. Section 2 gives an outline of
our computation. This is elaborated upon in Sections
3–5, as we feel it may be useful for those interested in
pursuing similar large-scale distributed computations.
Section 6 contains our main experimental results, includ-
ing conjectures on dominant schur modules Section 6.1,
evidence for the normal distribution conjecture Section
6.2, discussion of Boij–Söderberg coefficients Section 6.3,
unimodality conjectures Section 6.4, and a discussion of
the redundancy of Betti numbers Section 6.5

1. Mathematical background

1.1. Betti number notation

Notation for Betti numbers can be confusing, so we out-
line our notation and discuss how it relates to other com-
monnotations. Throughout, we let S = C[x0, x1, . . . , xn].
Our computations center on the case n = 2 and thus in
Sections 2–5 we restrict to the case n = 2. Given some
d ≥ 1 we let R = Sym(Sd ) be the symmetric algebra,
which is a polynomial ring on dim Sd many variables.
While R depends on the choice of d, we often abuse
notation and omit reference to d.

We use S(0; d) to denote the dth Veronese subring
S(d) = ⊕iSdi ⊆ S, and we view S(0; d) as an R-module.
The ring S(0; d) is the homogeneous coordinate ring
of the image of Pn under d-uple embedding ι : Pn ↪→
P(n+d

d )−1. We set S(b; d) := ⊕iSb+di, which is the graded
R-module corresponding to the pushforward ι∗OPn (b).

For the standard graded structure, we set
Kp,q(P

n, b; d) = Torp(S(b; d),C)p+q. Using standard
Betti number notation, we have βp,p+q(P

n, b; d) =
βp,p+q(S(b; d)) = dimKp,q(P

n, b; d). The Betti table of
(n, b; d) is then the table where βp,p+q(S(b; d)) is placed
in the (p, q)-spot.

For the multigraded structure, we write Kp,q(P
n,

b; d)a = Torp(S(b; d),C)a where a ∈ Zn+1 is a mul-
tidegree. In this notation, we must have that |a| =
d(p+ q) + b. We also use the Betti number notation
βp,a(P

n, b; d) = βp,a(S(b; d)) = dimKp,q(P
n, b; d)a.

Note the standard graded Betti numbers are recoverable
from its multigraded Betti numbers via the equation

βp,p+q(P
n, b; d) =

∑
a∈Zn+1

|a|=(p+q)d+b

βp,a(P
n, b; d).

A useful way to keep track of the multigraded Betti num-
bers is via theZn+1-graded Hilbert series. In general, ifM
is a Zn+1-graded module then we use HSM(t0, t1, . . . , tn)
to denote the multigraded Hilbert series. This is particu-
larly convenient for encoding the multigraded structure
of the multigraded vector space Kp,q(P

n, b; d), as we can
write

HSKp,q(Pn,b;d)(t0, t1, . . . , tn) =
∑

a∈Zn+1

|a|=d(p+q)+b

βp,a(S(b; d))ta

where if a = (a0, a1, . . . , an) then ta := ta00 ta11 · · · tann .

Remark 1.1. Since we will only consider the case
n = 2 for much of the article, we often write
Kp,q(b; d) := Kp,q(P

2, b; d). We similarly abbreviate
the notation for the multigraded Betti numbers in the
cases where we are working with P2.

These notions of Betti numbers, and the relations
between them, are perhaps best understood through an
example.

Example 1.1. Weconsider ι∗OP2 where ι : P2 ↪→ P9 is the
3-uple embedding. The Betti table of S(0; 3) is

1 − − − − − − −
− 27 105 189 189 105 27 −
− − − − − − − 1 .

Focusing on the boldfaced 27, we have K1,1(0; 3) =
C27 and β1,2(0; 3) = 27. As a Z3-graded vector space,
K1,1(0; 3) has 19 distinct multidegrees, which we encode
via the Hilbert series

HSK1,1(0;3)(t0, t1, t2)

= t40 t21 + t30 t31 + t20 t41 + t40 t1t2 + 2t30 t21 t2 + 2t20 t31 t2 + t0t41 t2 + t40 t22
+ 2t30 t1t22 + 3t20 t21 t22 + 2t0t31 t22 + t41 t22 + t30 t32 + 2t20 t1t32 + 2t0t21 t32
+ t31 t32 + t20 t42 + t0t1t42 + t21 t42 .

Thus for instance K1,1(0; 3)(4,2,0) = C and
K1,1(0; 3)(2,2,2) = C3.

1.2. Schurmodules and dominant weights

We also consider the Schur functor decomposition of
Kp,q(P

n, b; d) arising from the linear action of GLn+1(C)

on S, and so we briefly review the relevant notation and
terminology. See [Fulton and Harris 91] for a review of
this material.

If λ = (λ0 ≥ λ1 ≥ · · · ≥ λn) is a partition of weight
|λ| = λ0 + λ1 + · · · + λn we write Sλ = Sλ(C

n+1) for
the corresponding Schur functor, which is a representa-
tion of GLn+1(C). The Schur functor decomposition of

400 J. BRUCE ET AL.



Kp,q(P
n, b; d) can be expressed as:

Kp,q(P
n, b; d) =

⊕
|λ|=d(p+q)+b

Sλ(C
n+1)⊕mp,λ(Pn,b;d),

withmp,λ(P
n, b; d) = mp,λ(n, b; d)being the Schur func-

tor multiplicities. The Schur functor decomposition is
recoverable from the multigraded Betti numbers (see
Algorithm 5.1).

Given λ = (λ1, λ2, . . . , λa) and λ′ = (λ′
1, λ

′
2, . . . , λ

′
b)

we say that λ dominates λ′ (or λ � λ′) if
∑k

i=1 λi ≥∑k
i=1 λ′

k for all k ≥ max{a, b}. This induces a partial
order on Zn+1, and given a subset W ⊂ Zn+1 we write
domWeightsW for the set of dominant weights inW .

Example 1.2. Consider the Schur functor decomposition
of K14,1(0; 5), which appears in Appendix 2:

K14,1(0; 5) ∼= S(34,21,20) ⊕ S(33,25,17) ⊕ S(33,24,18) ⊕ · · ·
The weight (33, 24, 18) is dominated by (33, 25, 17)
but is not dominated by (34, 21, 20). In this case, the
two maximally dominant weights are (34, 21, 20) and
(33, 25, 17).

1.3. Monomial syzygies

In [Ein et al. 16], Ein, Erman, and Lazarsfeld used
monomial techniques to construct nonzero elements
of Kp,q(P

n, b; d) for a wide range of values of the
parameters. The basic idea behind the construction
is the following: first, one replaces the Veronese ring
S(d) = S(0; d) by the Veronese of a quotient S(0; d) :=
(S/(xd0 , xd1 , . . . , xdn))(d). We write Sd for the quotient vec-
tor space Sd/(xd0 , xd1 , . . . , xdn) and R := Sym(Sd ) for the
corresponding polynomial ring. A standard Artinian
reduction argument induces a natural isomorphism
between the syzygies of S(0; d), resolved over R, and the
syzygies of S(d), resolved over R = Sym(Sd ). A similar
statement holds for S(b; d), and thus to produce nonzero
elements ofKp,q(P

n, b; d) it is enough to produce nonzero
syzygies of S(b; d).

Ein, Erman, and Lazarsfeld produced monomial syzy-
gies via the following recipe: for some degree e let f be
the lex-leading monomial of degree e that is nonzero in
R. For instance, if e = d then we would take f = xd−1

0 x1.
Next, letm1, . . . ,ms be distinct monomials in R such that
mi f = 0 in R for all 1 ≤ i ≤ s. For instance, mi could
be any monomial divisible by x0. Let ζ := m1 ∧ m2 ∧
· · · ∧ ms ⊗ f ∈ ∧s Sd ⊗ Se. Then, ζ will induce a cycle in
the appropriate sequence of the form (2.1). Under mild
restrictions on the mi, one also shows that ζ is not a
boundary, and hence it induces a nonzero element the
homology group Kp,q(P

n, b; d).

We write Ep,q(P
n, b; d) for the vector space of mono-

mial syzygies constructed in [Ein et al. 16]. This is a
Zn+1-graded vector space, and hence we can also discuss
the dominant weights of this space, which we denote by
domWeights Ep,q(P

n, b; d).

2. Overview of computational approach

For our computations, we focus on the case of P2. The
standard computational approach involves computing
a minimal free resolution, but the complexity grows
quite quickly with d. For instance, d = 2, 3, 4 are easily
computable in Macaulay2, but our computation did not
terminate for d = 5.

We take a different approach, relying on linear algebra
computations to determine the Betti table. Using the
Koszul complex to compute Tor-groups, we have that
the vector space Kp,q(b; d) is the cohomology of the
complex:

p+1∧
Sd ⊗ Sb+(q−1)d

∂p+1−−→
p∧
Sd ⊗ Sb+qd

∂p−→
p−1∧

Sd ⊗ Sb+(q+1)d

(2.1)
where ∂p is defined by:

∂p(m1 ∧ m2 ∧ · · · ∧ mp ⊗ f )

=
p∑

k=1

(−1)km1 ∧ m2 ∧ · · · ∧ m̂k ∧ · · · ∧ mp ⊗ (mk f ).

Since the differential respects the Z3-multigrading, it
suffices to separate (2.1) into multigraded strands. Thus
for each a = (a0, a1, a2) ∈ Z3 where a0 + a1 + a2 = b+
d(p+ q), we have that Kp,q(b; d)a is the cohomology of(p+1∧

Sd ⊗ Sb+(q−1)d

)
a

∂p+1,a−−→
( p∧

Sd ⊗ Sb+qd

)
a

∂p,a−→
(p−1∧

Sd ⊗ Sb+(q+1)d

)
a

. (2.2)

This reduces computing the multigraded (or graded)
Betti numbers of M to the computation of the ranks of a
large number of individual matrices. If we choose bases
for the source and target consisting of monomials, then
each ∂p,a is represented by matrices whose entries are
either 0 or ±1.

Example 2.1. Consider K2,2(0; 3)(7,3,2), which is one of
the multigraded entries for the structure sheafOP2 under
the 3-uple embedding. To compute this, we first construct
the matrix ∂2,(7,3,2). We choose products of monomials
for a basis on both the source and target. For instance,
x3 ∧ x2y ⊗ x2y2z2 ∈ (

∧2 S3 ⊗ S6)(7,3,2) is a basis vector

EXPERIMENTAL MATHEMATICS 401



# of Relevant Largest
d b Matrices Matrix

6

0 1, 028 596, 898× 1, 246, 254
1 148 7, 345× 9, 890
2 148 7, 345× 9, 890
3 1, 028 596, 898× 1, 246, 254
4 1, 753 4, 175, 947× 12, 168, 528
5 1, 753 4, 175, 947× 12, 168, 528

Figure . This table summarizes data about the matrices involved
in our computations of the Veronese syzygies of P2 when
d = 6. We include it here to give a hint of the scale of computa-
tion involved. See Section  for more details.

in the source. We have

∂2,(7,3,2)(x3 ∧ x2y ⊗ x2y2z2) = x3 ⊗ x4y3z2 − x2y ⊗ x5y2z2.

Working over all such monomials, we represent ∂2,(7,3,2)
by a matrix

x3 ⊗ x4y3z2

x2y ⊗ x5y2z2

x2z ⊗ x5y3z
xy2 ⊗ x6y2z2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3 ∧ x2y ⊗ x2y2z2 x3 ∧ xy2 ⊗ x3yz2 x3 ∧ x2z ⊗ x2y3z · · ·
1 1 1 · · ·

−1 0 0 · · ·
0 0 −1 · · ·
0 −1 0 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The dimension of K2,2(0; 3)(7,3,2) is determined by the
ranks and sizes of these matrices. Since ∂2,(7,3,2) has 23
columns, we have

dimK2,2(0; 3)(7,3,2) = dim ker ∂2,(7,3,2) − dim im ∂3,(7,3,2)

= (
23 − rank ∂2,(7,3,2)

)− rank ∂3,(7,3,2)

= 23 − 8 − 15 = 0.

Our computational approach can be summarized as
follows:

1. Precomputation:We use known vanishing results
and facts about Hilbert series to reduce the num-
ber of matrices whose rank we need to compute.
We also use standard duality results to focus on
simpler matrices in some cases.

2. Main computation: We construct the remaining
relevant matrices, and use an LU-decomposition
algorithm and distributed, high throughput com-
putations to compute the ranks of those matrices.

3. Post-processing: We assemble our data to pro-
duce the multigraded Betti numbers and the
standard Betti numbers, and we apply a highest
weight decomposition algorithm to obtain the
Schur module decompositions.

While the largest computational challenges come from
the main computation step, the scale of our data also
creates some challenges in executing and coordinating

the other steps. In the following sections, we describe the
relevant issues in some detail.

Remark 2.1. With the exception of the rank computa-
tions, all other steps are symbolic in nature. However,
since we use a numerical algorithm to compute the ranks
of the matrices, there is potential for numerical error in
that step. See Section 4.2 In post-processing, we decom-
pose the Kp,q space into Schur modules, and this can
correct small numerical errors. See Section 5.2

3. Precomputation

3.1. Determining the relevant range of Betti numbers

A number of the Kp,q spaces are entirely determined
by combining the Z3-graded Hilbert series with known

vanishing results. The following lemma is well-known to
experts, but we include it for reference.

Lemma 3.1. The Z3-graded Hilbert series for S(b; d) is
a rational function of the form A(t0, t1, t2)/B(t0, t1, t2),
where

A(t0, t1, t2) =
∑
p,a

(−1)p dimKp,q(b; d)ata and B(t0, t1, t2)

=
∏

b∈N3,|b|=d

1 − tb.

Proof. Let F be the minimal free resolution of S(b; d)

as a R = Sym(Sd )-module. The ring R inherits a nat-
ural Z3-grading from the Z3-grading on Sd , and
thus we can assume that F = [· · · → F1 → F0] is Z3-
graded. If we write Fp := ⊕aR(−a)βp,a , then we have
βp,a = dimKp,q(b; d)a.

The Z3-graded Hilbert series of R is 1/B(t0, t1, t2) and
thus the Hilbert series of R(−a) is ta/B(t0, t1, t2). The
desired statement then follows from additivity of Hilbert
series. �

If we fix p, b, d and |a|, then Lemma 3.1 implies that
A(t0, t1, t2) entirely determines Kp,q(b; d)a, unless there
are multiple values of q such that Kp,q(b; d)a �= 0.

402 J. BRUCE ET AL.



Definition 3.1. Given b and d, we define the relevant
range as the set of pairs (p, q), where Kp,q(b; d) �= 0 and
where either Kp−1,q+1(b; d) �= 0 or Kp+1,q−1(b; d) �= 0.

For instance, looking at β(P2, 0; 5) in Appendix 1, we
see that the relevant range is the set {(14, 1), (15, 1),
(13, 2), (14, 2)}. All other entries are determined by the
Hilbert series.

Since it easy to compute the Hilbert series of the
modules S(b; d), it will be much easier to compute Betti
numbers outside of the relevant range. For P2 the relevant
range is precisely understood. See [Ein and Lazarsfeld 12,
Remark 6.5] for the Kp,0 and Kp,2 statements, and [Green
84b, Theorem 2.2] and [Green 84a, Theorem 2.c.6] for
the Kp,1 statements.

3.2. Computing outside the relevant range

For values outside of the relevant range, we compute
βp,a(b; d) using the Hilbert series. Recall that we must
have |a| = (p+ q)d + b for the space to be nonzero. The
following elementary algorithm computes A(t0, t1, t2).

Algorithm 3.2.
Input: b, d.
Output: The polynomial A(t0, t1, t2) for S(b; d), as in

Lemma 3.1
– N := d

((d+2
2

)− 1
)

and L := {a ∈ N3 such
that |a| ≡ b(mod d) and |a| ≤ N}.

–C(t0, t1, t2) :=
∑

a∈L dim Sata

– Let A(t0, t1, t2) be the sum of all terms of
degree ≤ N in the product of C(t0, t1, t2)
and B(t0, t1, t2).

Proof. By Lemma 3.1, we have A(t0, t1, t2) =
HSS(b;d)(t0, t1, t2)B(t0, t1, t2). If we can bound the degree
of A(t0, t1, t2), then we can bound the number of terms
in the power series HSS(b;d) that we will need to consider.
Each S(b; d) is a Cohen–Macaulay R-module and thus
has projective dimension

(d+2
2

)− 3. And since 0 ≤ b ≤ d,
the regularity of S(b; d) is at most 2. Thus, the largest
total degree of a nonzero Betti number of S(b; d) is
N = d(

(d+2
2

)− 1), and it follows that degA ≤ N. By
definition, C(t0, t1, t2) is the sum of all terms of degree
≤ N in the power series HSS(b;d)(t0, t1, t2). �

4. Main computation

4.1. Constructing thematrices in the relevant range

Within the relevant range we can incorporate the S3-
symmetry to restrict to multidegrees (a0, a1, a2) where
a0 ≥ a1 ≥ a2. Moreover, we can use duality for Koszul
cohomology groups to further cut down the number of
matrices we need to compute [Green 84a, Theorem 2.c.6].

The table in Figure 3 lists the number of matrices needed
(after accounting for duality and S3-symmetries) in the
computations for various values of d and b.

Remark 4.1. For testing purposes, we also computed
dimKp,q(b; d) using our rank algorithms for many (p, q)
outside of the relevant range, including all Kp,q(b; d) for
d ≤ 4. In all cases, the computation gave the correct result.

Writing out and storing each of thematrices ∂p,a is inef-
ficient, both in terms of runtime andmemory.We stream-
line this process by utilizing a symmetry of the matrices
∂p,a for various a. Consider the commutative diagram

p Sd ⊗ Sqd+b
∂p

φp

p−1 Sd ⊗ Sq(d+1)+b

φp−1

p Sd

dp p−1 Sd

where φp(m1 ∧ m2 ∧ · · · ∧ mp ⊗ f ) = m1 ∧ m2 ∧ · · · ∧
mp and similarly for φp−1, and where dp(m1 ∧ m2 ∧ · · · ∧
mp) = ∑p

k=1(−1)km1 ∧ m2 ∧ · · · ∧ m̂k ∧ · · · ∧ mp.
We represent ∂p and dp as matrices with respect to the

basis consisting of wedge/tensor powers of all monomials.
For a multidegree a, we write dp,≤a for the submatrix of dp
involving basis vectors of degree ≤ a.

We claim that ∂p,a equals dp,≤a. The crucial observation
is the following. For a pure tensorm1 ∧ m2 ∧ · · · ∧ mp ⊗
f ∈ ∧p Sd ⊗ Se of degree a, the monomial f is entirely
determined by the multidegree a and by the monomials
m1,m2, . . . ,mp. In other words, if we know the multi-
degree of a monomial pure tensor, then the ⊗Se factor is
redundant information.

Example 4.1. Let S = C[x, y, z] and consider a mono-
mial m1 ∧ m2 ⊗ f ∈ (

∧2 S3 ⊗ S6)(7,3,2). If m1 = x3 and
m2 = x2y then f must equal x2y2z2.

We can thus compute the rank of ∂p,a by computing the
rank of a submatrix of a dp. So instead of constructing and
storing each ∂p,a, we simply precompute the matrix dp
and then take slices corresponding to any particular mul-
tidegree. In practice, this seemed to significantly improve
the runtime and memory on the construction of the
matrices, though we did not track precise comparisons
with a more naive construction of the matrices.

Example 4.2. For d = 6, it took one hour on a standard
laptop to construct the relevant matrices for all b. One
of the more complicated entries, K9,0(3; 6), required 178
distinct matrices which took up a total of 2 GB of space.
While the bulk of these matrices are very small, some of
thematrices can bemassive. See Figure 3 and Example 4.4
for more details.
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# of Relevant Largest
d b Matrices Matrix

4

0 0 N/A
1 0 N/A
2 56 255× 669
3 56 255× 669

# of Relevant Largest
d b Matrices Matrix

5

0 102 2, 151× 3, 159
1 0 N/A
2 102 2, 151× 3, 159
3 424 38, 654× 95, 760
4 424 38, 654× 95, 760

Figure . There are no relevant matrices for d < 4. For d = 4, 5 and each b, we list the number of relevant matrices. See Figure  for the
data when d = 6. Some lines are identical because of duality of Koszul cohomology groups.

4.2. Sparse linear algebra

Computing the cohomology of (2.2) amounts to com-
puting the ranks of many matrices. However, as seen in
Figure 3 these matrices can be quite large.While standard
(dense) matrix algorithms quickly fail to terminate, the
matrices turn out to be quite sparse, as the formula for
∂p given in equation (2.1) implies that each row of ∂p,a has
only p non-zero entries.

Example 4.3. For K8,1(0; 5), we use 41 matrices which
range in size from 23 × 144 to 22, 349 × 24, 157. For
the largest these matrices, only 0.03% of the entries are
nonzero.

We can thus use sparse algorithms for our rank com-
putations. Specifically, we base our rank computations on
a rank revealing version of LU-factorization. Like many
matrix factorizations, LU-factorization seeks to write a
matrix as product of twomatrices that are easier to under-
stand. In particular, if A is an m × n matrix with m ≥ n,
then an exact LU-factorization writes A as:

QAP = LU = L
(
U11 U12
0 0

)

where:
� Q is anm × m permutation matrix,
� P is a n × n permutation matrix,
� L is a lower triangular matrix with unit diagonal,
� U11 is a non-singular r × r upper-triangular matrix,
and

� U12 is a r × (m − r) matrix.
Given such a factorization the rank ofA equals the size

of U11. Since we use numerical computation, in practice
we generally factor A as:

QAP = LU = L
(
U11 U12
0 U22

)
where P,Q, L,U11,U12 are as before, and U22 is, in a
sense, insignificant relative to U11. Specifically we want
the smallest singular value ofU11 to be much bigger than
the largest singular value ofU22. The number of non-zero
singular values of A is then approximately the number of
non-zero singular values of U11, i.e., the size of U11. (For
a more in-depth discussion of using LU factorizations see
[Golub and Van Loan 96, Section 3.2].)

We use theMatLab interface to theLUSOL library [Gill
et al. 87, MATLABXX] to produce an LU-factorization of
each matrix A := ∂p,a. The matrix U is an n × m upper
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Figure . These Q-Q plots are based on the Betti numbers in the first row of the Betti diagram ofO
P2 with respect to the d = 5 (on the

left) and d = 6 embeddings. They such a normal distribution, as in [Ein et al. , Conjecture B].
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triangular matrix, whose diagonal entries are decreasing
in size, and U11 is the sub-matrix of U on the first k
columns and rows, where k is the largest number such
that that |Uk,k| is greater than some chosen tolerance.
(Since we do not have clear data on how to appropriately
chose the tolerance, we chose instead to vary the toler-
ance. See Remark 5.1 below.) In this way, we actually com-
pute the numerical rank of A with respect to this given
tolerance.More succinctly we approximate the rank of the
differential A := ∂p,a by counting the number of diagonal
entries ofU larger than the above tolerance.

While this approach using sparse LU-factorization
algorithms allows us to go beyond what is currently
possible with dense matrix algorithms there are two
down sides. First, while sparse, our matrices tend to
have very high rank (relative to their size). For instance,
the matrix ∂9,(19,19,19) has size 596, 898 × 1, 246, 254
and rank 596,307. This adds to the complexity of the
LU-factorization algorithm, and increases runtime and
memory usage. Second, due to the threshold and the
approximate nature of our factorization, our rank com-
putations are numerical and not symbolic in nature.
There is the possibility of numerical error. See Section 5.2
for a discussion of error, and how post-processing catches
some small numerical errors.

4.3. High throughput computations

The rank computations can be efficiently distributed over
numerous computers. We implemented these compu-
tations using high throughput computing via HTCon-
dor [HTCondor Team XX] on both the University of
Wisconsin-Madison campus computing pool [CHTC
XX] and on the Open Science Grid [Open Science Grid
XX]. In addition, since some of those rank computa-
tions required substantial RAM, we used University of
Wisconsin-Madison’s High Throughput Computing clus-
ter to manage our computations.

We do not a priori know the RAM and time required
for individual matrix computations. We thus start by sub-
mitting jobs with LUSOL’s default memory allocation. For
the jobs that fail, we increase the memory allocation and
resubmit. We iterate this process until the computation
terminates. This approach works well with our data, as
the bulk of the matrices terminate with very little RAM.
However, for some computations, the memory required
exceeds 250 GB of RAM, and our hardware grid has a
small number of nodes with this much RAM available.
These largest computations can take days to complete

Example 4.4. One of our larger computations was
for the Betti number K9,0(3; 6). After accounting for
symmetries, the computation involved 178 distinct

matrices, the largest of which was 596, 898 × 1, 246, 254.
For the matrices, the RAM and time used were:

� 80% used < 1 GB RAM, taking < 1 minute on
average, with a max of 18 minutes.

� 9% used 1–10 GB RAM, taking 13 minutes on
average, with a max of 40 minutes.

� 10% used 10–100 GB RAM, taking 5 hours on
average, with a max of 15 hours.

� The remaining twomatrices each used 450GBRAM.
One took 27 hours and the other took 49 hours.

5. Post-processing the data

5.1. Betti numbers and Schurmodule
decompositions

Finally, we assemble and post-process the data. Obtain-
ing the multigraded Betti numbers and the total Betti
numbers is simple. For the multigraded and total Betti
numbers, we have

βp,a(b; d) = rank(ker ∂p,a) − rank(∂p+1,a)

and
βp,p+q(b; d) =

∑
a∈Zn+1

|a|=(p+q)d+b

βp,a(b; d)

respectively. We determine the Schur module decom-
position via the highest weight greedy algorithm below.
For a polynomial P, we write lex(P) for the lex-leading
monomial of P.

Algorithm 5.1. (Schur Module Decomposition).
Input: βp,a(b; d) for fixed b, d, p and all a with |a| =

(p+ q)d + b.
Output: A list K of the partitions appearing in the Schur

module decomposition of Kp,q(b; d), with
multiplicity.
– L := {

a such that |a| = (p+ q)d + b
}

and
H = ∑

a∈L βp,a(b; d) · ta.
– K = {}.
– While the coefficient of lex(H) > 0 do:

– Let λ = (λ1, λ2, λ3) be the weight of the
lex-leading monomial in H .

– Let K = K ∪ {λ}.
– Let H equal H minus the multigraded
Hilbert series of the Schurmodule Sλ(C

3).
– Return K.

5.2. Numerical error

With the exception of the computation of themultigraded
Betti numbers all other steps in our computation are sym-
bolic. However, as we use numerical methods for the rank
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computations there is a chance for errors to appear in the
multigraded Betti numbers.

We can sometimes detect and correct numerical errors
when we apply Algorithm 5.1. Since the Kp,q(b; d) spaces
are GL3-representations, each space must decompose as
a direct sum of a much smaller number of Schur mod-
ules. Since the numerical errors tend to arise in the
larger matrices, which tend to involve the most balanced
weights, the greedy algorithm outlined in Algorithm 5.1
still sometimes suggests a “best fit Schur decomposition”
for our multigraded data.

For all cases with d ≤ 5, there appear to have been
no numerical errors.2 With d = 6: there appear to be no
numerical errors for b = 1, 2; there do appear to be some
numerical errors for b = 0, 3 and we are continuing to
process those results; and we are still awaiting the com-
plete results for b = 4, 5, but we expect to find numeri-
cal errors in those cases as well. We believe that finding a
more robust “best-fit Schur decompose” algorithmwill be
crucial for extending our computation beyond d = 6.

Remark 5.1. In a different direction, we also vary the tol-
erance in our computation as a way of understanding
these numerical errors. For many of the rank computa-
tions, we actually perform an array of computations with
various different values for the tolerance. This enables
us to look over the data to see if a rank value is sta-
ble with respect to an array of tolerance values, as that
would increase our confidence in the result. Moreover,
we hope that this data will provide a foundation for pre-
dicting appropriate tolerance values, and thus improving
the algorithm in the future. At the moment, this remains
largely speculative.

6. Conjectures

In this section, we summarize several conjectures and
observations derived by combining our data with other
known results.

6.1. Dominant Schurmodules

Themost efficient way to encode the structure of the Betti
tables of Veroneses is via the Schur functor description,
as this encapsulates and encodes the essential symme-
tries of these Betti tables. We thus begin by focusing on
Question 0.1. When analyzing a representation of GLn,
the first layer is, in a sense, given by the dominant weight
representations that appear in the decomposition. Our
data led us to a conjecture about these dominant weight

 Interestingly, earlier computationswherewe used aQR-decomposition algo-
rithm seem to have produced minor numerical errors in a small number of
multigraded Betti numbers for d = 5.

representations. This can be viewed as a first approx-
imation of an answer to Question 0.1. Moreover, our
proposed answer sharpens Ein and Lazarsfeld’s Vanishing
Conjecture for Veronese syzygies [Ein and Lazarsfeld
12, Conjecture 7.5], and it suggests a strong uniformity
among the syzygies arising in each row of the Betti table.

In Section 1 above, we reviewed the monomial syzygy
construction from [Ein et al. 16]. While the monomial
syzygies Ep,q(P

n, b; d) represent only a small fraction
of the total syzygies, they are conjecturally sufficient to
give sharp vanishing/nonvanishing bounds [Ein et al. 16,
Remark 2.8]. In other words, Ein and Lazarsfeld’s conjec-
ture on vanishing says that

Ep,q(P
n, b; d) �= 0 ⇐⇒ Kp,q(P

n, b; d) �= 0.

Weconjecture that thesemonomial syzygies not only con-
trol the (non)vanishing of the Kp,q(b; d), but they also
determine the most dominant Schur module weights.

Conjecture 6.1. For all n, d, b, p and q, we have:

domWeights Ep,q(P
n, b; d) = domWeightsKp,q(P

n, b; d).

We underscore the counterintuitive nature of the con-
jecture.We see no obvious reasonwhymonomial syzygies
should determine the vanishing/nonvanishing question,
let alone why they would provide a full description of the
dominant weights. But Conjecture 6.1, which was discov-
ered primarily through our experimental data, suggests
that these simplemonomial syzygies are deeply connected
to the Schur module structure of the Kp,q spaces.

Example 6.1. The space K2,1(0; 4) is the direct sum of
nine distinct Schur modules, each with multiplicity one.
There are two dominant weight Schur modules: S(9,2,1)
and S(8,4,0). These are naturally in bijection with the
two dominant weight monomial syzygies from E2,1(0; 4):
x30x1 ∧ x30x2 ⊗ x30x1 and x30x1 ∧ x20x21 ⊗ x30x1.

The conjecture also suggests a mysterious uniformity
among all of the Kp,q(P

n, b; d) lying in a single row of
a Betti table. Namely, if we vary only p, then the mono-
mial syzygies constructed in [Ein et al. 16] naturally form
a graded lattice, with a unique maximal and minimal ele-
ment. In other words, it is natural to think of the entire
qth row as a single object

K•,q(P
n, b; d) :=

⊕
p

Kp,q(P
n, b; d)

and to askwhether this vector space is a representation (or
even an irreducible representation) over a larger group.
Precisely such a phenomenon occurs when d = 2 by [Sam
14].
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Example 6.2. ConsiderK•,1(P
2, 0; 3), which corresponds

to the first row of the Betti table in Example 1.1. The most
dominant weights of Kp,1(P

2, 0; 3) are in bijection with
the weights of the monomial syzygies in the pth row of
the following lattice:

x2y ⊗ x2y

x2y ∧ xy2 ⊗ x2y x2y ∧ x2z ⊗ x2y

x2y ∧ xy2 ∧ x2z ⊗ x2y

x2y ∧ xy2 ∧ x2z ∧ xyz ⊗ x2y

x2y ∧ xy2 ∧ x2z ∧ xyz ∧ y2z ⊗ x2y x2y ∧ xy2 ∧ x2z ∧ xyz ∧ xz2 ⊗ x2y

x2y ∧ xy2 ∧ x2z ∧ xyz ∧ y2z ∧ xz2 ⊗ x2y

We have confirmed Conjecture 6.1 even in some
cases, where a full computation of the Kp,q is infeasible.
Our rank computations of ∂p,a take the longest when
a is highly balanced, e.g. a = (12, 11, 10). By contrast,
Conjecture 6.1 addresses the most dominant—and thus
most unbalanced—weights. The parallel nature of our
computational techniques thus enabled us to verify
Conjecture 6.1 in some cases when d = 7.

In all of the examples, we have computed, the multi-
plicities of the dominant weight Schur modules is always
one. It would be interesting to know whether this always
holds.

Question 6.1. Let λ ∈ domWeightsKp,q(P
n, b; d). Does

the representation Sλ(C
n+1) appear in Kp,q(P

n, b; d) with
multiplicity one?

Related toConjecture 6.1 andQuestion 0.1, we propose
the following vague question:

Question 6.2. Find a compelling combinatorial description
of the set domWeightsKp,q(P

n, b; d).

A closely related conjecture based on the data is that
the last nonzeroKp,1(0; d) space is a particular irreducible
Schur module.

Conjecture 6.2. Let p := d · (d+1
2

)
, and let

(a, b, c) =
((d+2

3

)− 1 , 1
6d(d2 + 5) ,

(d+1
3

)− 1
)

.

We have Kp,p+1(P
2, 0; d) ∼= S(a,b,c).

This provides a Schur functor analogue of the corre-
sponding conjecture from [Castryck et al. XX, §8.3]. Note
that the specific value of p is the maximum value, where
Kp,p+1(0; d) �= 0.

6.2. Normal distribution

In [Ein et al. 15], the authors show that a “randomly” cho-
sen Betti table converges (up to some rescaling function)
to a binomial distribution, which then in turn converges
to a normal distribution via the law of large numbers. This
led to the conjecture that for Veronese embeddings, a plot
of Betti numbers in any row of the Betti should converge,
after rescaling, to a normal distribution.

In order to test this conjecture, it is useful to
define what we call the Betti distribution for (q, b, d).
Fixing b, d, and q, we consider the function p �→
C dim ·Kp+c,q(b; d) where C ∈ Q is the appropriate con-
stant so that this is a discrete probability distribution and
c ∈ Z is such that the first non-zero value occurs when
p = 0. We then can compare these distributions to others
in hopes of shedding light on the normality conjecture.

One way to compare our data to a normal distribu-
tion is by creating a quantile–quantile (or Q–Q) plot.
Specifically, having fixed q, b, and d we consider theQ–Q
plot comparing the Betti distribution for (q, b, d) to the
normal distribution of best fit. If these two distributions
were approximately the same we would expect the points
in the Q–Q plot to be roughly distributed along the line
y = x. Our resulting plots provide mild evidence for the
conjecture.

Examining these Q–Q plots in further detail it seems
that noise in the tails of the rows often muddies plots. In
light of this – and as the tails of the row are unlikely to
effect any form of convergence to a normal distribution
– we also performed the above procedure after truncat-
ing the first few and last entries of each row. These plots
appear in Figure 4 and provide the first computational
evidence for [Ein et al. 15, Conjecture B] for any variety
of dimension > 1. These graphics not only support [Ein
et al. 15, Conjecture B], but they suggest that the conjec-
tured behavior might kick even for modest values of d.

6.3. Boij–Söderberg coefficients

Boij–Söderberg theory shows that the Betti table of any
graded module can be decomposed as a positive rational
sum of certain building blocks known as pure diagrams.
The first proof of themain result appears in [Eisenbud and

Figure . We plot the Boij-Söderberg coefficients ofO
P2 (3) under

the embedding by d = 5 (on the left) andO
P2 under the embed-

ding by d = 6 (on the right). See also Example ..
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Schreyer 09, Theorem 0.2], and [Fløystad 12] provides an
expository treatment of the theory, including definitions
of the relevant terms. As a consequence of Boij–Söderberg
theory, we can study the rational coefficients that arise in
this decomposition.

To get coefficients that are well-defined, we need to
choose a basis for the pure diagrams πd. Given a degree
sequence d = (d0, d1, . . . , dr) we set πd as the Betti table
(with rational entries), where

βi, j(πd) :=
{∏

i�= j
1

|di−d j| if j = di
0 if j �= di.

For instance,

π(0,2,3) =
( 1

6 − −
− 1

2
1
3

)
.

Then for any graded module M over a poly-
nomial ring, there exists a chain of degree
sequences CM such that we can uniquely write

β(M) =
∑
d∈CM

adπd with ad ∈ Q>0.

See, for instance, [Fløystad 12, Theorem 5.1] for a discus-
sion of these decompositions and their uniqueness prop-
erties. We define the Boij–Söderberg coefficents ofM as
the sequence (ad)d∈CM .

Example 6.3. Let S = Q[x, y, z] and I = 〈x2, xy, y4〉.
Then, we have the decomposition

β(S/I) =

⎛⎜⎜⎝
1 − −
− 2 1
− − −
− 1 1

⎞⎟⎟⎠ = 3 ·

⎛⎜⎜⎝
1
6 − −
− 1

2
1
3

− − −
− − −

⎞⎟⎟⎠

+ 3 ·

⎛⎜⎜⎝
1
10 − −
− 1

6 −
− − −
− − 1

15

⎞⎟⎟⎠+ 4 ·

⎛⎜⎜⎝
1
20 − −
− − −
− − −
− 1

4
1
5

⎞⎟⎟⎠
and thus the Boij–Söderberg coefficients of S/I are
(3, 3, 4).

In [Ein et al. 15, §3], the Boij–Söderberg coefficients of
Veronese varieties are shown to be closely connected to
the conjectural “normal distribution” property discussed
in the previous section, and thus Question 0.3 naturally
raises the following question:

Question 6.3. For fixed b and d → ∞, how do the Boij–
Söderberg coefficients behave?

The limited data we have gathered suggested that the
Boij–Söderberg coefficients are unlikely to be evenly or
sporadically distributed; see Example 6.4 and Figure 5. In
fact, we conjecture:

Conjecture 6.3. For any b, d, the Boij–Söderberg coeffi-
cients of β(P2, b; d) are unimodal.

We restrict this conjecture to P2 because more compli-
cated overlaps between rows will arise for Pn with n ≥ 3
and d � 0, and our data are insufficient to shed light on
that.

One can sharpen Question 6.3 in other ways: does one
of the coefficients dominate, as in [Erman 15]? Under
appropriate rescaling, will the coefficients converge to a
reasonable function in the limit?

Example 6.4. We compute the Betti table β(P2, 3; 5) to
be

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10 165 1260 5865 18360 39900 58695 49419 12870 2002 . . . . . . . . .

. . . 120 1575 9639 52650 172172 291720 338130 291720 192780 97920 37740 10710 2115 260 15

. . . . . . . . . . . . . . . . . .

The Boij–Söderberg coefficients aremassive. For instance,
the first coefficient is 2636271525888000. To make the
coefficients more reasonable, we rescale by 10−16 and
round off, yielding the sequence of (rescaled) Boij-
Söderberg coefficients(

.263627, 1.5441, 8.05149, 4.52584, 1.04027,
.455071 , .125537

)
These are plotted on the left in Figure 5.

6.4. Unimodality

Many natural statistics associated to the syzygies of
Veronese embeddings appear to always behave uni-
modally. This leads us to propose the following question.

Question 6.4. Fix d, n, b and q.When is each of the follow-
ing a unimodal function of p?

1. The rank of Kp,q(P
n, b; d);

2. The number of distinct irreducible Schur modules
appearing in Kp,q(P

n, b; d);
3. The total number of irreducible Schur modules

appearing in Kp,q(P
n, b; d);

4. The largest multiplicity of a Schur module in
Kp,q(P

n, b; d);
5. The number of dominant weights in

Kp,q(P
n, b; d).
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Figure . The left plots the number of Schur modules (with multiplicity) in Kp,1(P
2, 3; 5) for 3 ≤ p ≤ 17. The right plots the number of

dominant weights for the same input. Both plots are unimodal, as suggested in Question ..

The data suggests that these functions are nearly always
unimodal. Thiswould not be surprising, especially in light
of the conjectural normally distributed behavior of the
Betti numbers. However, proving unimodality of one of
the above functions might be a more tractable first step
toward Question 0.3.

Remark 6.1. In Question 6.4(5), unimodality fails for
d = 3 and b = 0. See Example 6.2. This is the only known
failure of unimodality that we are aware of.

Example 6.5. On P2, we consider the case b = 2 and
d = 4 and q = 0. See Appendix 1 for the Betti table.
The rank of Kp,0(P

2, 2; 4) is (6, 62, 276, 660, 825, 252)
for 0 ≤ p ≤ 5, and the rank is 0 for other values of p. The
number of irreducible Schur modules (with multiplicity)
in Kp,0(P

2, 2; 4) is (1, 2, 7, 12, 13, 5) for 0 ≤ p ≤ 5.

Example 6.6. On P2 we consider the case b = 2 and
d = 5 and q = 0. The number of irreducible Schur
modules (with multiplicity) for Kp,1(P

2, 2; 5) is plot-
ted in Figure 6. The number of dominant weights in
Kp,1(P

2, 2; 5) is (1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 2, 2, 1),
and is also plotted in Figure 6.

6.5. Redundancy

The following question was first posed to us, in various
forms, by Eisenbud, Lazarsfeld, and Raicu. We focus on
the case of P2 for simplicity.

Question 6.5. Fix b and let d � 0. Are most syzygies of
OP2 (b) under the d-uple embedding determined by the
Hilbert series? Or are most syzygies irrelevant to the Hilbert

series? More precisely, for which ε > 0 and d � 0 can we
find some (p, q) where∣∣∣1 − dimKp,q(P

2,b;d)

dimKp−1,q+1(P2,b;d)

∣∣∣ < ε?

Our data does not provide a clear indication of what
to expect for this question. For d = 4, the entry with
the highest proportion of “redundant” syzygies comes
in the case b = 2, where we have K5,0(2; 4) = 252 and
K4,1(2; 4) = 450 and∣∣∣1 − dimK5,0(P

2,2;4)
dimK4,1(P2,2;4)

∣∣∣ = 0.44.

For d = 5 and d = 6, the most redundant entries also
occur for b = 2 and (p, q) = (5, 0). In the case d = 5
we have |1 − dimK5,0(P

2,2;5)
dimK5,1(P2,2;5) | ≈ 0.59, and for d = 6 the

corresponding value is ≈ 0.57. It would be interest-
ing to better understand what is possible in the limit
as d → ∞.

One could also questions about redundancy of multi-
graded Betti numbers or of Schur functors. For instance, a
folklore question had been to produce an example where
redundant Schur modules appear. For b = 0, we find that
first case arises when d = 5, where both K14,1(0; 5) and
K13,2(0; 5) have a copy of S(30,25,20).

Question 6.6. Do such redundant Schur modules appear
frequently or only sporadically?

Example 6.7. For all d ≤ 5 and all 0 ≤ b < 4, the only
redundant Schur modules that arise are S(30,25,20) which
arises in both K14,1(0; 5) and K13,2(0; 5); S(30,24,21) which
arises in both K14,1(0; 5) and K13,2(0; 5); and the dual
examples for b = 3.
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Appendix 1. Total Betti numbers

Here we include the Betti tables for n = 2, d = 4, 5, and 0 ≤ b ≤ d. Additional data such as multigraded Betti numbers,
and further examples is available at https://syzygydata.com.

β(P2, 0; 4) =
0 1 2 3 4 5 6 7 8 9 10 11 12
1 . . . . . . . . . . . .
. 75 536 1947 4488 7095 7920 6237 3344 1089 120 . .
. . . . . . . . . . 55 24 3

β(P2, 1; 4) =
0 1 2 3 4 5 6 7 8 9 10 11 12
3 24 55 . . . . . . . . . .
. . 120 1089 3344 6237 7920 7095 4488 1947 536 75 .
. . . . . . . . . . . . 1

β(P2, 2; 4) =
0 1 2 3 4 5 6 7 8 9 10 11 12
6 62 276 660 825 252 . . . . . . .
. . . 55 450 2376 4488 4950 3630 1804 588 114 10
. . . . . . . . . . . . .

β(P2, 3; 4) =
0 1 2 3 4 5 6 7 8 9 10 11 12
10 114 588 1804 3630 4950 4488 2376 450 55 . . .
. . . . . . . 252 825 660 276 62 6
. . . . . . . . . . . . .

β(P2, 0; 5)

=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 . . . . . . . . . . . . . . . . . .
. 165 1830 10710 41616 117300 250920 417690 548080 568854 464100 291720 134640 39780 4858 375 . . .
. . . . . . . . . . . . . 2002 4200 2160 595 90 6

β(P2, 1; 5) =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 35 120 . . . . . . . . . . . . . . . .
. . 405 5865 29988 97920 231540 417690 590070 661232 590070 417690 231540 97920 29988 5865 405 . .
. . . . . . . . . . . . . . . . 120 35 3

β(P2, 2; 5)

=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
6 90 595 2160 4200 2002 . . . . . . . . . . . . .
. . . 375 4858 39780 134640 291720 464100 568854 548080 417690 250920 117300 41616 10710 1830 165 .
. . . . . . . . . . . . . . . . . . 1

β(P2, 3; 5)

=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10 165 1260 5865 18360 39900 58695 49419 12870 2002 . . . . . . . . .
. . . . 120 1575 9639 52650 172172 291720 338130 291720 192780 97920 37740 10710 2115 260 15
. . . . . . . . . . . . . . . . . . .
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β(P2, 4; 5)

=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
15 260 2115 10710 37740 97920 192780 291720 338130 291720 172172 52650 9639 1575 120 . . . .
. . . . . . . . . 2002 12870 49419 58695 39900 18360 5865 1260 165 10
. . . . . . . . . . . . . . . . . . .

Appendix 2. Schur module decompositions

Here, we include the Schur module decomposition of Kp,q(P
2, 0; 5) and Kp,q(P

2, 3; 5) for all (p, q) in the rele-
vant range. Complete Schur module decompositions for the remainder of the computed examples is available at
https://syzygydata.com.

K14,1(P
2, 0; 5) ∼= S(34,21,20) ⊕ S(33,25,17) ⊕ S(33,24,18) ⊕ S(33,23,19) ⊕ S(33,22,20) ⊕ S(32,25,18) ⊕ S(32,24,19) ⊕ S(32,23,20) ⊕ S(32,22,21)

⊕ S(31,25,19) ⊕ S(31,24,20) ⊕ S(31,23,21) ⊕ S(30,25,20) ⊕ S(30,24,21) ⊕ S(29,25,21)

K15,1(P
2, 0; 5) ∼= S(34,25,21)

K13,2(P
2, 0; 5) ∼= S(30,30,15) ⊕ S(30,28,17) ⊕ S(30,27,18) ⊕ S(30,26,19) ⊕ S(30,25,20) ⊕ S(30,24,21) ⊕ S(29,26,20) ⊕ S(29,24,22) ⊕ S(28,28,19)

⊕ S(28,27,20) ⊕ S2(28,26,21) ⊕ S(28,25,22) ⊕ S(28,24,23) ⊕ S(27,26,22) ⊕ S(27,24,24) ⊕ S(26,26,23)

K14,2(P
2, 0; 5) ∼= S(32,30,18) ⊕ S2(32,28,20) ⊕ S(32,27,21) ⊕ S2(32,26,22) ⊕ S2(32,24,24) ⊕ S(31,30,19) ⊕ S(31,29,20) ⊕ S2(31,28,21) ⊕ S2(31,27,22)

⊕ S2(31,26,23) ⊕ S(31,25,24) ⊕ S(30,30,20) ⊕ S(30,29,21) ⊕ S3(30,28,22) ⊕ S2(30,27,23) ⊕ S3(30,26,24) ⊕ S2(29,28,23)
⊕ S2(29,27,24) ⊕ S(29,26,25) ⊕ S2(28,28,24) ⊕ S(28,27,25) ⊕ S(28,26,26)

K5,0(P
2, 3; 5) ∼= S(20,4,4) ⊕ S(19,7,2) ⊕ S(19,6,3) ⊕ S(19,5,4) ⊕ S(18,8,2) ⊕ S2(18,7,3) ⊕ S3(18,6,4) ⊕ S2(17,9,2) ⊕ S4(17,8,3)

⊕ S6(17,7,4) ⊕ S3(17,6,5) ⊕ S2(16,10,2) ⊕ S5(16,9,3) ⊕ S9(16,8,4) ⊕ S6(16,7,5) ⊕ S4(16,6,6) ⊕ S3(15,11,2)
⊕ S6(15,10,3) ⊕ S10(15,9,4) ⊕ S11(15,8,5) ⊕ S8(15,7,6) ⊕ S(14,12,2) ⊕ S5(14,11,3) ⊕ S11(14,10,4) ⊕ S12(14,9,5)
⊕ S13(14,8,6) ⊕ S4(14,7,7) ⊕ S(13,13,2) ⊕ S3(13,12,3) ⊕ S8(13,11,4) ⊕ S12(13,10,5) ⊕ S13(13,9,6) ⊕ S9(13,8,7)
⊕ S3(12,12,4) ⊕ S7(12,11,5) ⊕ S12(12,10,6) ⊕ S9(12,9,7) ⊕ S5(12,8,8) ⊕ S4(11,11,6) ⊕ S7(11,10,7) ⊕ S4(11,9,8)
⊕ S3(10,10,8) ⊕ S(10,9,9)

K6,0(P
2, 3; 5) ∼= S(22,7,4) ⊕ S(21,9,3) ⊕ S(21,8,4) ⊕ S2(21,7,5) ⊕ S3(20,9,4) ⊕ S3(20,8,5) ⊕ S2(20,7,6) ⊕ S2(19,11,3) ⊕ S4(19,10,4)

⊕ S7(19,9,5) ⊕ S5(19,8,6) ⊕ S4(19,7,7) ⊕ S(18,12,3) ⊕ S5(18,11,4) ⊕ S7(18,10,5) ⊕ S10(18,9,6) ⊕ S6(18,8,7)
⊕ S2(17,13,3) ⊕ S5(17,12,4) ⊕ S12(17,11,5) ⊕ S12(17,10,6) ⊕ S14(17,9,7) ⊕ S4(17,8,8) ⊕ S5(16,13,4) ⊕ S8(16,12,5)
⊕ S15(16,11,6) ⊕ S15(16,10,7) ⊕ S10(16,9,8) ⊕ S2(15,15,3) ⊕ S2(15,14,4) ⊕ S9(15,13,5) ⊕ S13(15,12,6) ⊕ S19(15,11,7)
⊕ S13(15,10,8) ⊕ S8(15,9,9) ⊕ S(14,14,5) ⊕ S7(14,13,6) ⊕ S11(14,12,7) ⊕ S15(14,11,8) ⊕ S8(14,10,9) ⊕ S8(13,13,7)
⊕ S8(13,12,8) ⊕ S11(13,11,9) ⊕ S3(13,10,10) ⊕ S3(12,12,9) ⊕ S3(12,11,10) ⊕ S2(11,11,11)

K7,0(P
2, 3; 5) ∼= S(24,9,5) ⊕ S(24,7,7) ⊕ S(23,10,5) ⊕ S(23,9,6) ⊕ S(23,8,7) ⊕ S2(22,11,5) ⊕ S2(22,10,6) ⊕ S4(22,9,7) ⊕ S2(21,12,5)

⊕ S3(21,11,6) ⊕ S5(21,10,7) ⊕ S4(21,9,8) ⊕ S3(20,13,5) ⊕ S4(20,12,6) ⊕ S8(20,11,7) ⊕ S5(20,10,8) ⊕ S5(20,9,9)
⊕ S2(19,14,5) ⊕ S5(19,13,6) ⊕ S9(19,12,7) ⊕ S10(19,11,8) ⊕ S7(19,10,9) ⊕ S2(18,15,5) ⊕ S4(18,14,6) ⊕ S10(18,13,7)
⊕ S10(18,12,8) ⊕ S12(18,11,9) ⊕ S2(18,10,10) ⊕ S(17,16,5) ⊕ S3(17,15,6) ⊕ S8(17,14,7) ⊕ S12(17,13,8) ⊕ S13(17,12,9)
⊕ S8(17,11,10) ⊕ S(16,16,6) ⊕ S5(16,15,7) ⊕ S7(16,14,8) ⊕ S13(16,13,9) ⊕ S8(16,12,10) ⊕ S6(16,11,11) ⊕ S4(15,15,8)
⊕ S7(15,14,9) ⊕ S9(15,13,10) ⊕ S6(15,12,11) ⊕ S2(14,14,10) ⊕ S5(14,13,11) ⊕ S6(14,12,12) ⊕ S20(13,13,12)

K8,0(P
2, 3; 5) ∼= S(26,10,7) ⊕ S(25,10,8) ⊕ S(24,12,7) ⊕ S(24,11,8) ⊕ S2(24,10,9) ⊕ S(23,12,8) ⊕ S(23,11,9) ⊕ S2(23,10,10) ⊕ S(22,14,7)

⊕ S(22,13,8) ⊕ S3(22,12,9) ⊕ S2(22,11,10) ⊕ S(21,14,8) ⊕ S(21,13,9) ⊕ S3(21,12,10) ⊕ S(20,16,7) ⊕ S(20,15,8)

⊕ S3(20,14,9) ⊕ S3(20,13,10) ⊕ S2(20,12,11) ⊕ S(19,16,8) ⊕ S(19,15,9) ⊕ S3(19,14,10) ⊕ S(19,13,11) ⊕ S2(19,12,12)
⊕ S(18,18,7) ⊕ S(18,17,8) ⊕ S3(18,16,9) ⊕ S3(18,15,10) ⊕ S3(18,14,11) ⊕ S2(18,13,12) ⊕ S2(17,16,10) ⊕ S(17,15,11)

⊕ S3(17,14,12) ⊕ S2(16,16,11) ⊕ S2(16,15,12) ⊕ S2(16,14,13) ⊕ S(15,14,14)
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K9,0(P
2, 3; 5) ∼= S(28,10,10) ⊕ S(26,12,10) ⊕ S(24,14,10) ⊕ S(24,12,12) ⊕ S(22,16,10) ⊕ S(22,14,12) ⊕ S(20,18,10) ⊕ S(20,16,12) ⊕ S(20,14,14)

⊕ S(18,18,12) ⊕ S(18,16,14) ⊕ S(16,16,16)

K4,1(P
2, 3; 5) ∼= S(14,14,0)

K5,1(P
2, 3; 5) ∼= S(18,14,1) ⊕ S(17,14,2) ⊕ S(16,14,3) ⊕ S(15,14,4) ⊕ S(14,14,5)

K6,1(P
2, 3; 5) ∼= S(21,15,2) ⊕ S(21,14,3) ⊕ S(20,15,3) ⊕ S(20,14,4) ⊕ S(19,17,2) ⊕ S(19,16,3) ⊕ S2(19,15,4) ⊕ S2(19,14,5) ⊕ S(18,17,3)

⊕ S(18,16,4) ⊕ S2(18,15,5) ⊕ S2(18,14,6) ⊕ S(17,17,4) ⊕ S(17,16,5) ⊕ S2(17,15,6) ⊕ S2(17,14,7) ⊕ S(16,15,7)

⊕ S(16,14,8) ⊕ S(15,15,8) ⊕ S(15,14,9) ⊕ S5(14,12,12) ⊕ S18(13,13,12)

K7,1(P
2, 3; 5) ∼= S(24,15,4) ⊕ S(23,17,3) ⊕ S(23,16,4) ⊕ S3(23,15,5) ⊕ S(23,14,6) ⊕ S(23,13,7) ⊕ S(23,11,9) ⊕ S2(22,17,4) ⊕ S2(22,16,5)

⊕ S4(22,15,6) ⊕ S2(22,14,7) ⊕ S(22,13,8) ⊕ S(22,12,9) ⊕ S(22,11,10) ⊕ S(21,19,3) ⊕ S2(21,18,4) ⊕ S5(21,17,5)
⊕ S5(21,16,6) ⊕ S8(21,15,7) ⊕ S3(21,14,8) ⊕ S3(21,13,9) ⊕ S(21,12,10) ⊕ S2(21,11,11) ⊕ S(20,19,4) ⊕ S2(20,18,5)
⊕ S6(20,17,6) ⊕ S5(20,16,7) ⊕ S8(20,15,8) ⊕ S4(20,14,9) ⊕ S3(20,13,10) ⊕ S2(20,12,11) ⊕ S3(19,19,5) ⊕ S4(19,18,6)
⊕ S9(19,17,7) ⊕ S8(19,16,8) ⊕ S10(19,15,9) ⊕ S4(19,14,10) ⊕ S4(19,13,11) ⊕ S(18,18,7) ⊕ S6(18,17,8) ⊕ S5(18,16,9)
⊕ S8(18,15,10) ⊕ S3(18,14,11) ⊕ S2(18,13,12) ⊕ S6(17,17,9) ⊕ S4(17,16,10) ⊕ S7(17,15,11) ⊕ S2(17,14,12) ⊕ S2(17,13,13)
⊕ S3(16,15,12) ⊕ S(16,14,13) ⊕ S3(15,15,13)

K8,1(P
2, 3; 5) ∼= S(26,17,5) ⊕ S(26,16,6) ⊕ S2(26,15,7) ⊕ S2(26,13,9) ⊕ S(26,11,11) ⊕ S(25,18,5) ⊕ S2(25,17,6) ⊕ S3(25,16,7) ⊕ S4(25,15,8)

⊕ S3(25,14,9) ⊕ S2(25,13,10) ⊕ S2(25,12,11) ⊕ S(24,20,4) ⊕ S2(24,19,5) ⊕ S4(24,18,6) ⊕ S8(24,17,7) ⊕ S8(24,16,8)
⊕ S10(24,15,9) ⊕ S6(24,14,10) ⊕ S7(24,13,11) ⊕ S(24,12,12) ⊕ S2(23,20,5) ⊕ S5(23,19,6) ⊕ S9(23,18,7) ⊕ S13(23,17,8)
⊕ S16(23,16,9) ⊕ S15(23,15,10) ⊕ S11(23,14,11) ⊕ S7(23,13,12) ⊕ S(22,21,5) ⊕ S4(22,20,6) ⊕ S9(22,19,7) ⊕ S15(22,18,8)
⊕ S22(22,17,9) ⊕ S21(22,16,10) ⊕ S23(22,15,11) ⊕ S12(22,14,12) ⊕ S7(22,13,13) ⊕ S(21,21,6) ⊕ S6(21,20,7) ⊕ S13(21,19,8)
⊕ S20(21,18,9) ⊕ S27(21,17,10) ⊕ S27(21,16,11) ⊕ S22(21,15,12) ⊕ S12(21,14,13) ⊕ S5(20,20,8) ⊕ S14(20,19,9) ⊕ S21(20,18,10)
⊕ S28(20,17,11) ⊕ S26(20,16,12) ⊕ S21(20,15,13) ⊕ S4(20,14,14) ⊕ S9(19,19,10) ⊕ S17(19,18,11) ⊕ S22(19,17,12) ⊕ S19(19,16,13)
⊕ S13(19,15,14) ⊕ S7(18,18,12) ⊕ S15(18,17,13) ⊕ S10(18,16,14) ⊕ S6(18,15,15) ⊕ S5(17,17,14) ⊕ S5(17,16,15)
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