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We study systems of parameters over finite fields from a probabilistic perspective and use this to give the
first effective Noether normalization result over a finite field. Our central technique is an adaptation of
Poonen’s closed point sieve, where we sieve over higher dimensional subvarieties, and we express the
desired probabilities via a zeta function-like power series that enumerates higher dimensional varieties
instead of closed points. This also yields a new proof of a recent result of Gabber, Liu and Lorenzini (2015)
and Chinburg, Moret-Bailly, Pappas and Taylor (2017) on Noether normalizations of projective families
over the integers.

Given an n-dimensional projective scheme X ⊆Pr over a field, Noether normalization says that we can
find homogeneous polynomials that induce a finite morphism X→ Pn. Such a morphism is determined
by a system of parameters, namely by choosing homogeneous polynomials f0, f1, . . . , fn of degree d
where X∩V ( f0, f1, . . . , fn)=∅. Such a system of polynomials f0, f1, . . . , fn is a system of parameters
on the homogeneous coordinate ring of X . More generally, for k ≤ n we say that f0, f1, . . . , fk are
parameters on X if

dim V( f0, f1, . . . , fk)∩ X = dim X − (k+ 1).

By convention, the empty set has dimension −1.
Over an infinite field any generic choice of ≤ n+1 linear polynomials will automatically be parameters

on X . Over a finite field we can ask:

Questions 1.1. Let Fq be a finite field and X ⊆ Pr
Fq

be an n-dimensional closed subscheme:

(1) What is the probability that a random choice f0, f1, . . . , fk of polynomials of degree d will be
parameters on X?

(2) Can one effectively bound the degrees d for which such a finite morphism exists?

We will provide new insight into these questions by studying the distribution of systems of parameters
from both a geometric and probabilistic viewpoint.
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For the geometric side, we fix a field k and let S = k[x0, x1, . . . , xr ] be the coordinate ring of Pr
k. We

write Sd for the vector space of degree d polynomials in S. In Section 4, we define a scheme Dk,d(X)
parametrizing collections that do not form parameters. The k-points of Dk,d(X) are

Dk,d(X)(k)= {( f0, f1, . . . , fk) that are not parameters on X} ⊂ Sd × · · ·× Sd︸ ︷︷ ︸
k+1 copies

.

We prove an elementary bound on the codimension of these closed subschemes of the affine space S⊕k+1
d .

Theorem 1.2. Let X ⊆ Pr
k be an n-dimensional closed subscheme. We have:

codim Dk,d(X)=
{
≥
(n−k+d

n−k

)
if k < n,

= 1 if k = n.

This generalizes several results from the literature: the case k = n is a classical result about Chow
forms [Gelfand et al. 1994, 3.2.B]. For d = 1 and k < n, the bound is sharp, by a classical result about
determinantal varieties.1 The bound for the case k = 0 appears in [Benoist 2011, Lemme 3.3]. If k < n,
then the codimension grows as d→∞ and this factors into our asymptotic analysis over finite fields. It
also leads to a uniform convergence result that allows us to go from a finite field to Z.

For the probabilistic side, we work over a finite field Fq and compute the asymptotic probability that
random polynomials f0, f1, . . . , fk of degree d are parameters on X . The following result, which follows
from known results in the literature, shows that there is a bifurcation between the k = n and k < n cases,
reflecting Theorem 1.2.

Theorem 1.3 [Bucur and Kedlaya 2012; Poonen 2013]. Let X ⊆ Pr
Fq

be an n-dimensional closed
subscheme. The asymptotic probability that random polynomials f0, f1, . . . , fk of degree d are parameters
on X is

lim
d→∞

Prob( f0, f1, . . . , fk of degree d are parameters on X)=
{

1 if k < n,
ζX (n+ 1)−1 if k = n,

where ζX (s) is the arithmetic zeta function of X.

The maximal case k = n follows from the k = m+ 1 case of Bucur and Kedlaya [2012, Theorem 1.2]
(though they assume that X is smooth, their proof does not need that assumption when k = m+ 1) and
is proven using Poonen’s closed point sieve. Moreover, the result in both cases could be derived from
a slight modification of [Poonen 2013, Proof of Theorem 2.1]. See also [Charles and Poonen 2016,
Corollary 1.4] for a similar result.

The main results in our paper stem from a deeper investigation of the cases where k < n, as the limiting
value of 1 is only the beginning of the story. In the following theorem, we use |Z | to denote the number of
irreducible components of a scheme Z , and we write dim Z ≡ k if Z is equidimensional of dimension k.

1See [Bruns and Vetter 1988, Theorem 2.5] for a modern statement and proof. That result has a complicated history, discussed
in [Bruns and Vetter 1988, Section 2.E], with some cases dating as far back as [Macaulay 1916, Section 53].
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Theorem 1.4. Let X ⊆ Pr
Fq

be a projective scheme of dimension n. Fix e and let k < n. The probability
that random polynomials f0, f1, . . . , fk of degree d are parameters on X is

Prob
(

f0, f1, . . . , fk of degree d
are parameters on X

)
= 1−

∑
Z⊆Xreduced
dim Z≡n−k

deg Z≤e

(−1)|Z |−1q−(k+1)h0(Z ,OZ (d))+ o(q−e(k+1)(n−k+d
n−k )).

Theorem 1.4 illustrates that the probability of finding a sequence f0, f1, . . . , fk of parameters on X
is intimately tied to the codimension k geometry of X . Note that, by basic properties of the Hilbert
polynomial, as d→∞ we have

h0(Z ,OZ (d))=
deg(Z)
(n− k)!

dn−k
+ o(dn−k)= deg(Z)

(
n− k+ d

n− k

)
+ o(dn−k).

It follows that the term q−(k+1)h0(Z ,OZ (d)) lies in o(q−e(k+1)(n−k+d
n−k )) if and only if deg(Z) > e.

For instance, setting e= 1, the sum simplifies to 1− N ·q−(k+1)(n−k+d
n−k )+o(q−(k+1)(n−k+d

n−k )), where N is
the number of (n−k)-dimensional linear subspaces lying in X . It would thus be more difficult to find
parameters on a variety X containing lots of linear spaces, as illustrated in Example 8.1. More generally,
the probability of finding parameters for k < n depends on a power series that counts the number of
(n−k)-dimensional subvarieties of varying degrees, in analogue with the appearance of the zeta function
in the k = n case.

Our approach to Theorem 1.4 is motivated by a simple observation: f0, f1, . . . , fk fail to be parameters
if and only if they all vanish along some (n−k)-dimensional subvariety of X . We thus develop an analogue
of Poonen’s sieve where closed points are replaced by (n−k)-dimensional varieties. Sieving over higher
dimensional varieties presents new challenges, especially bounding the error. This error depends on the
Hilbert function of these varieties, and one key innovation is a uniform lower bound for Hilbert functions
given in Lemma 3.1.

This perspective also leads to our second main result: an answer to Questions 1.1.(2) where the
bound is in terms of the sum of the degrees of the irreducible components. If X ⊆ Pr has minimal
irreducible components V1, V2, . . . , Vs (considered with the reduced scheme structure), then we define
d̂eg(X) :=

∑s
i=1 deg(Vi ) (see Definition 2.2). We set logq 0=−∞.

Theorem 1.5. Let X ⊆ Pr
Fq

where dim X = n. If max
{
d, q

dn

}
≥ d̂eg(X) and

d > logq d̂eg(X)+ logq n+ n logq d

then there exist f0, f1, . . . , fn of degree dn+1 inducing a finite morphism π : X→ Pn
Fq

.

The bound is asymptotically optimal in q. Namely, if we fix d̂eg(X), then as q →∞, the bound
becomes d = 1. Thus, a linear Noether normalization exists if q � d̂eg(X). For a fixed q , we expect the
bound could be significantly improved. (Even the case dim X = 0 would be interesting, as it is related to
Kakeya type problems over finite fields [Ellenberg and Erman 2016; Ellenberg et al. 2010].)
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Theorem 1.5 provides the first explicit bound for Noether normalization over a finite field. (One could
potentially derive an explicit bound from Nagata’s argument [1962, Chapter I.14], though the inductive
nature of that construction would at best yield a bound that is multiply exponential in the largest degree
of a defining equation of X .)

After computing the probabilities over finite fields, we combine these analyses and characterize the
distribution of parameters on projective B-schemes where B = Z or Fq [t]. We use standard notions of
density for a subset of a free B-module; see Definition 7.1.

Corollary 1.6. Let B = Z or Fq [t]. If X ⊆ Pr
B is a closed subscheme whose general fiber over B has

dimension n, then

lim
d→∞

Density
{

f0, f1, . . . , fk of degree d that
restrict to parameters on X p for all p

}
=

{
1 if k < n,
0 if k = n and all d.

The density over B thus equals the product over all the fibers of the asymptotic probabilities over Fq .
In the case B = Z, our proof relies on Ekedahl’s infinite Chinese remainder theorem [Ekedahl 1991,
Theorem 1.2] combined with Proposition 5.1, which illustrates uniform convergence in p for the asymptotic
probabilities in Theorem 1.3. In the case B= Fq [t], we use Poonen’s analogue of Ekedahl’s result [Poonen
2003, Theorem 3.1].

When k = n, an analogue of Corollary 1.6 for smoothness is given by Poonen [2004, Theorem 5.13].
Moreover, while it is unknown if there are any smooth hypersurfaces of degree > 2 over Z (see for
example the discussion in [Poonen 2009]), the density zero subset from Corollary 1.6 turns out to be
nonempty for large d . This leads to a new proof of a recent result about uniform Noether normalizations.

Corollary 1.7. Let B = Z or Fq [t]. Let X ⊆ Pr
B be a closed subscheme. If each fiber of X over B has

dimension n, then for some d , there exist homogeneous polynomials f0, f1, . . . , fn ∈ B[x0, x1, . . . , xr ] of
degree d inducing a finite morphism π : X→ Pn

B .

Corollary 1.7 is a special case of a recent result of Chinburg, Moret-Bailly, Pappas and Taylor [2017,
Theorem 1.2] and of Gabber, Liu and Lorenzini [2015, Theorem 8.1]. This corollary can fail when B
is any of Q[t] or Z[t] or Fq [s, t], as in those cases, the Picard group of a finite cover of Spec B can fail
to be torsion. See Section 8 for explicit examples and counterexamples and see [Chinburg et al. 2017;
Gabber et al. 2015] for generalizations and applications.

There are a few earlier results related to Noether normalization over the integers. For instance [Moh
1979] shows that Noether normalizations of semigroup rings always exist over Z; and [Nagata 1962,
Theorem 14.4] implies that given a family over any base, one can find a Noether normalization over an
open subset of the base. Relative Noether normalizations play a key role in [Achinger 2015, Section 5].
There is also the incorrect claim in [Zariski and Samuel 1960, page 124] that Noether normalizations
exist over any infinite domain (see [Abhyankar and Kravitz 2007]). Brennan and Epstein [2011] analyze
the distribution of systems of parameters from a different perspective, introducing the notion of a generic
matroid to relate various different systems of parameters. In addition, after our paper was posted, work of
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Charles [2017] on arithmetic Bertini theorems appeared which, under the additional hypothesis that X is
integral and flat, implies a stronger version of Corollary 1.6 where one also obtains bounds on the norms
of the functions.

This paper is organized as follows. Section 2 gathers background results and Section 3 involves a key
lower bound on Hilbert functions. Section 4 contains our geometric analysis of parameters including a
proof of Theorem 1.2. Sections 5 and 6 contain the probabilistic analysis of parameters over finite fields:
Section 5 proves Theorem 1.3 and Theorem 1.5 while Section 6 gives the more detailed description via
an analogue of the zeta function enumerating (n−k)-dimensional subvarieties, including the proof of
Theorem 1.4. Section 7 contains our analysis over Z including proofs of Corollaries 1.6 and 1.7 and
related corollaries. Section 8 contains examples.

2. Background

In this section, we gather some algebraic and geometric facts that we will cite throughout.

Lemma 2.1. Let k be a field and let R be a (k + 1)-dimensional graded k-algebra where R0 = k. If
f0, f1, . . . , fk are homogeneous elements of degree d and R/〈 f0, f1, . . . , fk〉 has finite length, then the
extension k[z0, z1, . . . , zk] → R given by zi 7→ fi is a finite extension.

Proof. See [Bruns and Herzog 1993, Theorem 1.5.17]. �

This lemma implies that if X ⊆ Pr
k has dimension n, and if f0, f1, . . . , fn are parameters on X , then

the map φ : X→Pn
k given by sending x 7→ [ f0(x) : f1(x) : · · · : fn(x)] is a finite morphism. In particular,

if R is the homogeneous coordinate of X , then the ideal 〈 f0, f1, . . . , fn〉 ⊆ R has finite colength, and
thus the base locus of φ is the empty set. In other words, φ defines a genuine morphism. Moreover, the
lemma shows that the corresponding map of coordinate rings φ] : R→ k[z0, z1, . . . , zn] is finite, and
this implies that φ is finite.

Definition 2.2. Let X ⊆ Pr be a projective scheme with minimal irreducible components V1, . . . , Vs

(considered with the reduced scheme structure). We define d̂eg(X) :=
∑s

i=1 deg(Vi ). For a subscheme
X ′ ⊆ Ar with projective closure X ′ ⊆ Pr we define d̂eg(X ′) := d̂eg(X ′).

This provides a notion of degree which ignores nonreduced structure but takes into account components
of lower dimension. Similar definitions have appeared in the literature: for instance, in the language of
[Bayer and Mumford 1993, Section 3], we would have d̂eg(X)=

∑dim X
j=0 geom-deg j (X).

Lemma 2.3. Let k be any field and let X ⊆ Ar
k. Let f0, f1, . . . , ft be polynomials in k[x1, . . . , xr ]. If

X ′ = X ∩V( f0, f1, . . . , ft), then d̂eg(X ′)≤ d̂eg(X) ·
∏t

i=0 deg( fi ).

Proof. This follows from the refined version of Bezout’s theorem [Fulton 1984, Example 12.3.1]. �

3. A uniform lower bound on Hilbert functions

For a subscheme of Pr , the Hilbert function in degree d is controlled by the Hilbert polynomial, at least
if d is very large related to some invariants of the subscheme. We analyze the Hilbert function at the
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other extreme, where the degree of the subscheme may be much larger than d. The following lemma,
which applies to subschemes of arbitrarily high degree, provides uniform lower bounds that are crucial to
bounding the error in our sieves.

Lemma 3.1. Let k be an arbitrary field and fix some e ≥ 0. Let V ⊆ Pr
k be any closed, m-dimensional

subscheme of degree > e with homogeneous coordinate ring R:

(1) We have dim Rd ≥ h0(Pm,OPm (d)) for all d.

(2) For any 0 < ε < 1, there exists a constant C depending only on m and ε (but not on d or k or R)
such that

dim Rd > (e+ ε) · h0(Pm,OPm (d))

for all d ≥ Cem+1.

Proof. If k′ is a field extension of k, then the Hilbert series of R is the same as the Hilbert series of R⊗k k′.
We can thus assume that k is an infinite field. For part (1), we simply take a linear Noether normalization
k[t0, t1, . . . , tm] ⊆ R of the ring R [Eisenbud 1995, Theorem 13.3]. This yields k[t0, t1, . . . , tm]d ⊆ Rd ,
giving the statement about Hilbert functions.

We prove part (2) of the lemma by induction on m. Let S = k[x0, x1, . . . , xr ] and let IV ⊆ S be
the saturated, homogeneous ideal defining V . Thus R = S/IV . If m = 0, then we have dim Rd ≥

min{d + 1, deg V } ≥min{d + 1, e+ 1} which is at least e+ ε for all d ≥ e. This proves the case m = 0,
where the constant C can be chosen to be 1.

Now assume the claim holds for all closed subschemes of dimension less than m. Let V ⊂ Pr
k be

a closed subscheme with dim V = m ≥ 1. Fix 0 < ε < 1. Since we are working over an infinite field,
[Eisenbud 1995, Lemma 13.2(c)] allows us to choose a linear form ` that is a nonzero divisor in R. This
yields a short exact sequence 0→ R(−1) ·`−→ R→ R/`→ 0. Since R/`= S/(IV +〈`〉), this yields the
equality

dim Ri = dim Ri−1+ dim(S/(IV +〈`〉))i . (1)

Letting W = V ∩ V (`) we know that dim W = m − 1 and deg W = deg V . Moreover, if IV is the
saturated ideal defining V and if IW is the saturated ideal defining W , then since IW contains IV +〈`〉,
we have dim(S/(IV +〈`〉))i ≥ dim(S/IW )i . Combining with (1) yields

dim Ri ≥ dim Ri−1+ dim(S/IW )i . (2)

Now, by induction, in the case m − 1 and ε′ := 1+ε
2 , there exists C ′ depending on ε′ and m − 1 (or

equivalently depending on ε and m) where

dim(S/IW )i ≥ (e+ ε′)
(

m− 1+ i
m− 1

)
(3)
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for all i ≥ C ′em . Now let d ≥ C ′em . Iteratively applying (2) for i = d, d − 1, d − 2, . . . , dC ′em
e, we

obtain:

dim Rd ≥ dim RdC ′eme−1+

d∑
i=dC ′eme

dim(S/IW )i .

By dropping the dim RdC ′eme−1 term and applying (3), we conclude that

dim Rd ≥

d∑
i=dC ′eme

(e+ ε′)
(m−1+i

m−1

)
.

The identity
∑b

i=a

(i+k
k

)
=
(b+k+1

k+1

)
−
(a+k

k+1

)
implies that

∑d
i=dC ′eme(e+ ε

′)
(m−1+i

m−1

)
can be rewritten as

(e+ ε′)
((m+d

m

)
−
(m−1+dC ′em

e

m

))
. There exists a constant C depending on ε and m so that (ε′− ε)

(m+d
m

)
=( 1

2 −
ε
2

)(m+d
m

)
≥ (e+ ε′)

(m−1+dC ′em
e

m

)
for all d ≥ dCem+1

e. Thus, for all d ≥ dCem+1
e we have

dim Rd ≥ (e+ ε′)
(m+d

m

)
− (ε′− ε)

(m+d
d

)
= (e+ ε)

(m+d
m

)
. �

Remark 3.2. Asymptotically in e, the bound of Ce2 is the best possible for curves. For instance, let
C ⊆ Pr be a curve of degree (e + 1) lying inside some plane P2

⊆ Pr . Let R be the homogeneous
coordinate ring of C . If d ≥ e then the Hilbert function is given by

dim Rd = (e+ 1)d − e2
−e
2 .

Thus, if we want dim Rd ≥ (e+ ε)(d + 1), we will need to let d ≥ (e2
+ e+ 2ε)/(2(1− ε)) ≈ 1

2 e2. It
would be interesting to know if the bound Cem+1 is the best possible for higher dimensional varieties.

4. Geometric analysis

In this section we analyze the geometric picture for the distribution of parameters on X . The basic idea
behind the proof of Theorem 1.2 is that f0, f1, . . . , fk fail to be parameters on X if and only if they
all vanish along some (n−k)-dimensional subvariety of X . Since the Hilbert polynomial of a (n−k)-
dimensional variety grows like dn−k , when we restrict a degree d polynomial f j to such a subvariety,
it can be written in terms of ≈ dn−k distinct monomials. The polynomial f j will all vanish along the
subvariety if and only if all of the ≈ dn−k coefficients vanish. This rough estimate explains the growth of
the codimension of Dk,d(X) as d→∞.

We begin by constructing the schemes Dk,d(X). Fix X ⊆Pr
k a closed subscheme of dimension n over a

field k. Given k<n and d>0, let Ak,d be the affine space H 0(Pr ,OPr (d))⊕k+1 and k[c0,1, . . . , ck,(r+d
d )
] be

the corresponding polynomial ring. We enumerate the monomials in H 0(Pr ,OPr (d)) as m1, . . . ,m(r+d
d )

,
and then define the universal polynomial

Fi :=

(r+d
d )∑

j=1

ci, j m j ∈ k[c0,1, . . . , ck,(r+d
d )
]⊗k k[x0, x1, . . . , xr ].



2088 Juliette Bruce and Daniel Erman

Given a closed point c ∈ Ak,d we can specialize F0, F1, . . . , Fk and obtain polynomials f0, f1, . . . , fk ∈

κ(c)[x0, x1, . . . , xr ], where κ(c) is the residue field of c. We will thus identify each element of Ak,d(k)
with a collection of polynomials f = ( f0, f1, . . . , fk) ∈ k[x0, x1, . . . , xr ].

Now define 6k,d(X) ⊆ X ×Ak,d via the equations F0, F1, . . . , Fk . Consider the second projection
p2 : 6k,d(X)→Ak,d . Given a point f = ( f0, f1, . . . , fk) ∈Ak,d , the fiber p−1

2 ( f )⊆ X can be identified
with the points lying in X ∩V( f0, f1, . . . , fk). For generic choices of f (after passing to an infinite field
if necessary) the polynomials f0, f1, . . . , fk will define an ideal of codimension k+ 1, and thus the fiber
p−1

2 ( f ) will have dimension n− k− 1.
There is a closed sublocus Dk,d(X) ( Ak,d where the dimension of the fiber is at least n − k, and

we give Dk,d(X) the reduced scheme structure. It follows that Dk,d(X) parametrizes collections f =
( f0, f1, . . . , fk) of degree d polynomials which fail to be parameters on X .

Remark 4.1. If we fix XZ⊆Pr
Z, then we can follow the same construction to obtain a scheme Dk,d(XZ)⊆

Ak,d . Writing Xk as the pullback X ×Spec Z Spec k, we observe that the equations defining 6k,d(Xk) are
obtained by pulling back the equations defining 6k,d(XZ). It follows that Dk,d(XZ)×Spec Z Spec(k) has
the same set-theoretic support as Dk,d(Xk).

Definition 4.2. We let Dbad
k,d (X) be the locus of points in Dk,d(X) where f0, f1, . . . , fk−1 already fail to

be parameters on X and let D
good
k,d (X) := Dk,d(X) \Dbad

k,d (X). We set Dbad
0,d (X)=∅.

Remark 4.3. We have a factorization:

Ak,d → Ak−1,d ×A0,d

( f0, f1, . . . , fk) 7→ (( f0, f1, . . . , fk−1), fk).

We let π : Dk,d(X)→ Ak−1,d be the induced projection, which will we use to work inductively.

Proof of Theorem 1.2. First consider the case k = n. There is a natural rational map from An,d to the
Grassmanian Gr(n+ 1, Sd) given by sending the point ( f0, f1, . . . , fn) ∈ An,d to the linear space that
those polynomials span. Inside of the Grassmanian, the locus of choices of ( f0, f1, . . . , fn) that all vanish
on a point of X is a divisor in the Grassmanian defined by the Chow form; see [Gelfand et al. 1994, 3.2.B].
The preimage of this hypersurface in An,d is a hypersurface contained in Dn,d(X), and thus Dn,d(X) has
codimension 1.

For k < n, we will induct on k. Let k = 0. A polynomial f0 will fail to be a parameter on X if and
only if dim X = dim(X ∩V( f0)). This happens if and only if f0 is a zero divisor on a top-dimensional
component of X . Let V be the reduced subscheme of some top-dimensional irreducible component
of X and let IV be the defining ideal sheaf of V . Then the set of zero divisors of degree d on V will
form a linear subspace in A0,d corresponding to the elements of the vector subspace H 0(IV (d)). The
codimension of H 0(IV (d))⊆ Sd is precisely given by the Hilbert function of the homogeneous coordinate
ring of V in degree d. By applying Lemma 3.1(1), we conclude that for all d this linear space has
codimension at least

(n+d
d

)
. Since D0,d(X) is the union of these linear spaces over all top-dimensional

components of X , this proves that codim D0,d(X)≥
(n+d

d

)
.
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Take the induction hypothesis that we have proven the statement for D j,d(X ′) for all X ′ ⊆ Pr and all
j ≤ k − 1. We separate Dk,d(X) = Dbad

k,d (X)tD
good
k,d (X) and will show that each locus has sufficiently

large codimension. We begin with Dbad
k,d (X). By using the factorization from Remark 4.3, we can realize

Dbad
k,d (X)⊆ Ak,d ∼= Ak−1,d ×A0,d . By definition of Dbad

k,d (X), the image of Dbad
k,d (X) in Ak−1,d ×A0,d is

Dk−1,d(X)×A0,d . It follows that

codim(Dbad
k,d (X),Ak,d)= codim(Dk−1,d(X),Ak−1,d)≥

(n−k+1+d
n−k+1

)
≥

(n−k+d
n−k

)
,

where the middle inequality follows by induction.
Now consider an arbitrary point f = ( f0, f1, . . . , fk) in D

good
k,d (X). By definition, f0, f1, . . . , fk−1

are parameters on X , and thus π( f ) ∈ Ak−1,d \ Dk−1,d(X). Using the splitting of Remark 4.3, the
fiber of D

good
k,d (X) over f can be identified with D0,d(X ′) where X ′ := X ∩V( f0, f1, . . . , fk−1). Since

( f0, f1, . . . , fk−1) /∈ Dk−1,d(X), we have that dim X ′ = n− k. The inductive hypothesis thus guarantees
that codim D0,d(X ′)≥

(dim X ′+d
d

)
=
(n−k+d

d

)
. �

5. Probabilistic analysis, I: Proof of Theorem 1.3

The main result of this section is Proposition 5.1 which provides an effective bound for finding parameters,
and which we will use to prove Theorem 1.5. We also use this to give a new proof of Theorem 1.3 for
k < n. Throughout this section, we let X ⊆ Pr

Fq
be a projective scheme of dimension n over a finite

field Fq . Recall that Sd = H 0(Pr ,OPr (d)). We define

Pard,k = { f0, f1, . . . , fk that are parameters on X} ⊂ Sk+1
d .

In Theorem 1.3, we compute the following limit (which a priori might not exist):

lim
d→∞

Prob( f0, f1, . . . , fk of degree d are parameters on X) := lim
d→∞

#Pard,k

#Sk+1
d

.

Proposition 5.1. If k < n then

Prob( f0, f1, . . . , fk of degree d are parameters on X)≥ 1− d̂eg(X)(1+ d + d2
+ · · ·+ dk)q−(

n−k+d
n−k ).

Proof. We induct on k and largely follow the structure of the proof of Theorem 1.2. First, let k = 0. A
polynomial f0 will fail to be a parameter on X if and only if it is a zero divisor on a top-dimensional
component V of X . There are at most d̂eg(X) many such components. As argued in the proof of
Theorem 1.2, the set of zero divisors on V corresponds to the elements of H 0(Pr , IV (d)) which has
codimension at least

(n+d
d

)
in Sd . It follows that

Prob( f0 of degree d is not a parameter on X)≤ d̂eg(X)q−(
n+d

d ).

Now consider the induction step. We will separately compute the probability that f = ( f0, f1, . . . , fk)

lies in Dbad
k,d (X) and the probability that f lies in D

good
k,d (X). By definition, the projection π maps Dbad

k,d (X)
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onto Dk−1,d(X), and by induction

Prob(π( f ) ∈Pk−1,d(X)(Fq))≤ d̂eg(X)(1+ d + d2
+ · · ·+ dk−1)q−(

n−k+1+d
n−k+1 )

≤ d̂eg(X)(1+ d + d2
+ · · ·+ dk−1)q−(

n−k+d
n−k ).

We now assume f /∈ Dbad
k,d (X). We thus have that f0, f1, . . . , fk−1 are parameters on X . As in the proof

of Theorem 1.2, the fiber π−1( f ) can be identified with D0,d(X ′) where X ′ := X ∩V( f0, f1, . . . , fk−1).
By construction dim X ′ = n− k and by Lemma 2.3, d̂eg(X ′) ≤ d̂eg(X) · dk . Our inductive hypothesis
thus implies that

Prob
(
( f0, f1, . . . , fk) ∈ Dk,d(X)(Fq) given that
( f0, f1, . . . , fk−1) /∈ Dk−1,d(X)(Fq)

)
≤ d̂eg(X ′)q−(

n−k+d
n−k ) ≤ d̂eg(X) · dkq−(

n−k+d
n−k ).

Combining the estimates for Dbad
k,d (X) and D

good
k,d (X) yields the proposition. �

Proof of Theorem 1.3. If k < n, then we apply Proposition 5.1 to obtain

lim
d→∞

Prob
(

f0, f1, . . . , fk of degree d
are parameters on X

)
≥ lim

d→∞
1− d̂eg(X)(d0

+ d1
+ · · ·+ dk)q−(

n−k+d
n−k ) = 1.

Now let k = n. For completeness, we summarize the proof of [Bucur and Kedlaya 2012, Theorem 1.2].
We fix e, which will go to∞, and separate the argument into low, medium, and high degree cases.

Low degree argument. For a zero dimensional subscheme Y , we have that Sd surjects on H 0(Y,OY (d))
when d ≥ deg Y − 1 [Poonen 2004, Lemma 2.1]. So if d > deg P − 1, the probability that f0, f1, . . . , fn

all vanish at a closed point P ∈ X is 1− q−(n+1) deg P . If Y ⊆ X is the union of all points of degree ≤ e,
and if d ≥ deg Y − 1, then the surjection onto H 0(Y,OY (d)) implies that the probabilities at the points
P ∈ Y behave independently. This yields:

Prob
(

f0, f1, . . . , fn of degree d are parameters on X
at all points P ∈ X where deg(P)≤ e

)
=

∏
P∈X

deg(P)≤e

1− q−(n+1) deg P .

Medium degree argument. Our argument is nearly identical to [Poonen 2004, Lemma 2.4], and covers
all points whose degree lies in the range

[
e + 1, d

n+1

]
. For any such point P ∈ X , Sd surjects onto

H 0(P,OP(d)) and thus the probability that f0, f1, . . . , fn all vanish at P is q−`(n+1). By [Lang and
Weil 1954], #X (Fq`)≤ K q`n for some constant K independent of `. We have

Prob
(

f0, f1, . . . , fn of degree d all vanish

at some P ∈ X where e < deg(P)≤
⌊ d

n+1

⌋)≤
⌊ d

n+1

⌋∑
`=e+1

#X (Fq`)q
−`(n+1)

≤

∞∑
`=e+1

K q`nq−(n+1)`

=
K q−e−1

1− q−1 .

This tends to 0 as e→∞, and therefore does not contribute to the asymptotic limit.
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High degree argument. By the case when k = n − 1, we may assume that f0, f1, . . . , fn−1 form a
system of parameters with probability 1− o(1). So we let V be one of the irreducible components of
this intersection (over Fq ) and we let R be its homogeneous coordinate ring. If deg V ≤ d

n+1 , then it can
be ignored as we considered such points in the low and medium degree cases. Hence, we can assume
deg V > d

n+1 . Since dim R` ≥ min{`+ 1, deg R} for all `, the probability that fn vanishes along V is
at most q−bd/(n+1)c−1. Hence the probability of vanishing on some high degree point is bounded by
O(dnq−bd/(n+1)c−1) which is o(1) as d→∞.

Combining the various parts as e→∞, we see that the low degree argument converges to ζX (n+1)−1

and the contributions from the medium and high degree points go to 0. �

Remark 5.2. It might be interesting to consider variants of Theorem 1.3 that allow imposing conditions
along closed subschemes, similar to Poonen’s Bertini with Taylor coefficients [Poonen 2004, Theorem 1.2].
For instance, [Kedlaya 2005, Theorem 1] might be provable by such an approach, though this would be
more complicated than the original proof.

Proposition 5.1 yields an effective bound on the degree of a full system of parameters over a finite
field. Sharper bounds can be obtained if one allows the fi to have different degrees.

Corollary 5.3. (1) If d1 satisfies dn−1
1 q−d1−1 < (n · d̂eg(X))−1, then there exist g0, g1, . . . , gn−1 of

degree d1 that are parameters on X.

(2) Let X ′ be 0-dimensional. If max{d2+ 1, q} ≥ d̂eg(X ′) then there exists a degree d2 parameter on X ′.

Proof. Applying Proposition 5.1 in the case k = n− 1 yields (1). For (2), let f be a random degree d
polynomial and let P ∈ X ′ be a closed point. Since the dimension of the image of Sd in H 0(P,OP(d))
is at least min{d + 1, deg P}, the probability that f vanishes at P is at worst q−min{d+1,deg P} which is at
least q−1. It follows that the probability that a degree d function vanishes on some point of X ′ is at worst∑

P∈X ′ q
−1
≤ d̂eg(X ′)q−1. Thus if q > d̂eg(X ′), this happens with probability strictly less than 1. On

the other hand, if d + 1≥ d̂eg(X ′) then polynomials of degree d surject onto H 0(X ′,OX ′(d)) and hence
we can find a parameter on X ′ by choosing a polynomial that restricts to a unit on X ′. �

Proof of Theorem 1.5. If dim X = 0, then we can directly apply Corollary 5.3(2) to find a parameter
of degree d. So we assume n := dim X > 0. Since d > logq d̂eg(X)+ logq n+ n logq d it follows that
(n · d̂eg(X))−1 > q−ddn > q−d−1dn−1. Applying Corollary 5.3(1), we find g0, g1, . . . , gn−1 in degree d
that are parameters on X . Let X ′ = X ∩V (g0, g1, . . . , gn−1). Since max

{
d, q

dn

}
≥ d̂eg(X) it follows that

max{dn+1, q} ≥ dn d̂eg(X)≥ d̂eg(X ′), and Corollary 5.3(2) yields a parameter gn of degree dn+1 on X ′.
Thus gdn

0 , gdn

1 , . . . , gdn

n−1, gn are parameters of degree dn+1 on X . �

6. Probabilistic analysis, II: The error term and proof of Theorem 1.4

In this section, we let k < n and we analyze the error terms in Theorem 1.3 more precisely. In particular,
we prove Theorem 1.4, which shows that the probabilities are controlled by the probability of vanishing
along an (n−k)-dimensional subvariety, with varieties of lowest degree contributing the most.
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Our proof of Theorem 1.4 adapts Poonen’s sieve in a couple of key ways. The first big difference is
that instead of sieving over closed points, we will sieve over (n−k)-dimensional subvarieties of X ; this is
because polynomials f0, f1, . . . , fk will fail to be parameters on X only if they all vanish along some
(n−k)-dimensional subvariety.

The second difference is that the resulting probability formula will not be a product of local factors.
This is because the values of a function can never be totally independent along two higher dimensional
varieties with a nontrivial intersection. For instance, Lemma 6.1 shows that the probability that a degree d
polynomial vanishes along a line is q−(d+1), but the probability of vanishing along two lines that intersect
in a point is q−(2d+1) > (q−(d+1))2.

The following result characterizes the individual probabilities arising in our sieve.

Lemma 6.1. If Z ⊆Pr
Fq

is a reduced, projective scheme over a finite field Fq with homogeneous coordinate
ring R then

Prob( f0, f1, . . . , fk of degree d all vanish along Z)=
(

1
#Rd

)k+1

.

If d is at least the Castelnuovo–Mumford regularity of the ideal sheaf of Z , then

Prob( f0, f1, . . . , fk of degree d all vanish along Z)= q−(k+1)h0(Z ,OZ (d)).

Proof. Let I ⊆ S be the homogeneous ideal defining Z , so that R = S/I . An element h ∈ Sd vanishes
along Z if and only if it restricts to 0 in Rd i.e., if and only if it lies in Id . Since we have an exact sequence
of Fq -vector spaces:

0→ Id → Sd → Rd → 0

we obtain

Prob(h vanishes on Z)=
#Id

#Sd
=

1
#Rd

.

For k+ 1 elements of Sd , the probabilities of vanishing along Z are independent and this yields the first
statement of the lemma.

We write Ĩ for the ideal sheaf of Z . If d is at least the regularity of Ĩ , then H 1(Pr
Fq
, Ĩ (d))= 0. Hence

there is a natural isomorphism between Rd and H 0(Z ,OZ (d)). Thus, we have

1
#Rd
= q−h0(Z ,OZ (d)),

yielding the second statement. �
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Proof of Theorem 1.4. Throughout the proof, we set εe,k to be the error term for a given e and k, namely
εe,k := q−e(k+1)(n−k+d

n−k ). We also set:

Pard,k := { f0, f1, . . . , fk are parameters on X}

Lowd,k,e :=

{
f0, f1, . . . , fk all vanish along a variety Z
where dim Z = (n− k) and deg(Z)≤ e

}
Medd,k,e :=

{
( f0, f1, . . . , fk) /∈ Lowd,k,e which all vanish along a variety Z
where dim Z = (n− k) and e < deg(Z)≤ e(k+ 1)

}
Highd,k,e :=

{
( f0, f1, . . . , fk) /∈ Lowd,ke ∪Medd,k,e which all vanish along
a variety Z where dim Z = (n− k) and e(k+ 1) < deg(Z)

}
.

Note that if f0, f1, . . . , fk all vanish along a variety of dimension>n−k then they will also all vanish along
a high degree variety, and hence we do not need to count this case separately. For f = f0, f1, . . . , fk ∈ Sk+1

d ,
we thus have

Prob( f ∈ Pard,k)= 1−Prob( f ∈ Lowd,k,e ∪Medd,k,e ∪Highd,k,e)

= 1−Prob( f ∈ Lowd,k,e)−Prob( f ∈Medd,k,e)−Prob( f ∈ Highd,k,e).

It thus suffices to show that

Prob( f ∈ Lowd,k,e)=
∑

Z⊆X reduced
dim Z≡n−k

deg Z≤e

(−1)|Z |−1q−(k+1)h0(Z ,OZ (d))+ o(εe,k)

and that Prob( f ∈Medd,k,e) and Prob( f ∈ Highd,k,e) are each in o(εe,k).
We proceed by induction on k. When k = 0 the condition that f0 is a parameter on X is equivalent

to f0 not vanishing along a top-dimensional component of X . Thus, combining Lemma 6.1 with an
inclusion/exclusion argument implies the exact result:

Prob( f0 ∈ Pard,0)= 1−
∑

Z⊆X reduced
dim Z≡n−k

(−1)|Z |−1q−h0(Z ,OZ (d)).

By basic properties of the Hilbert polynomial, as d→∞ we have

h0(Z ,OZ (d))=
deg(Z)

n!
dn
+ o(dn)= deg(Z)

(n+d
d

)
+ o(dn).
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Hence for the fixed degree bound e, we obtain

Prob( f ∈ Pard,0)= 1−
∑

Z⊆X reduced
dim Z≡n−k

deg Z≤e

(−1)|Z |−1q−h0(Z ,OZ (d))−
∑

Z⊆X reduced
dim Z≡n−k

deg Z>e

(−1)|Z |−1q−h0(Z ,OZ (d))

= 1−
∑

Z⊆X reduced
dim Z≡n−k

deg Z≤e

(−1)|Z |−1q−h0(Z ,OZ (d))+ o(εe,0).

We now consider the induction step. Let f = ( f0, f1, . . . , fk) drawn randomly from Sk+1
d . Here we

separate into low, medium, and high degree cases.

Low degree argument. Let Vk,e denote the set of integral projective varieties V ⊆ X of dimension n− k
and degree ≤ e. We have f ∈ Lowd,k,e if and only if f vanishes on some V ∈ Vk,e. Since Vk,e is a finite
set, we may use an inclusion-exclusion argument to get

Prob( f ∈ Lowd,k,e)=
∑

Z⊆X a union of
V∈Vk,e

(−1)|Z |−1 Prob( f0, f1, . . . , fk of degree d all vanish along Z).

If deg Z > e then Lemma 6.1 implies that those terms can be absorbed into the error term o(εe,k).
Moreover, assuming that Z is a union of V ∈ Vk,e satisfying deg(Z)≤ e is equivalent to assuming Z is
reduced and equidimensional of dimensional n− k. We thus have

=

∑
Z⊆X reduced
dim Z≡n−k

deg Z≤e

(−1)|Z |−1 Prob( f0, f1, . . . , fk of degree d all vanish along Z)+o(εe,k).

Medium degree argument. We know that Prob( f ∈Medd,k,e) is bounded by the sum of the probabilities
that f vanishes along some irreducible variety V in Vk,e(k+1) \ Vk,e.

Prob( f ∈Medd,k,e)≤
∑

Z∈Vk,e(k+1)\Vk,e

Prob( f0, f1, . . . , fk of degree d all vanish along Z).

Lemma 6.1 implies that each summand on the right-hand side lies in o(εe,k). This sum is finite and thus
Prob( f ∈Medd,k,e) is in o(εe,k).

High degree argument. Proposition 5.1 implies that f0, f1, . . . , fk−1 are parameters on X with proba-
bility 1− o(q−(

n−k+1+d
d ))≥ 1− o(εe,k) for any e. Hence we may restrict our attention to the case where

f0, f1, . . . , fk−1 are parameters on X .
Let V1, V2, . . . , Vs be the irreducible components of X ′ := X∩V( f0, f1, . . . , fk−1) that have dimension

n− k. We have that f0, f1 . . . , fk fail to be parameters on X if and only if fk vanishes on some Vi . We
can assume that fk does not vanish on any Vi where deg Vi ≤ e(k+ 1) as we have already accounted for
this possibility in the low and medium degree cases. After possibly relabeling the components, we let
V1, V2, . . . , Vt be the components of degree > e(k+ 1) and X ′′ = V1 ∪ V2 ∪ · · · ∪ Vt . Using Lemma 2.3,
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we compute d̂eg(X ′′) ≤ d̂eg(X ′) = d̂eg(X) · dk . It follows that X ′′ has at most d̂eg(X)dk/(e(k + 1))
irreducible components.

Now for the key point: since the value of d is not necessarily larger than the Castelnuovo–Mumford
regularity of Vi , we cannot use a Hilbert polynomial computation to bound the probability that fk vanishes
along Vi . Instead, we use the lower bound for Hilbert functions obtained in Lemma 3.1. Let ε = 1

2 ,
though any choice of ε would work. We write R(Vi ) for the homogeneous coordinate ring of Vi . For any
1≤ i ≤ t , Lemmas 3.1 and 6.1 yield

Prob( fk of degree d vanishes along Vi )= q− dim R(Vi )d ≤ q−(e(k+1)+ε)(n−k+d
n−k )

whenever d ≥ Cek+1. Combining this with our bound on the number of irreducible components of X ′′

gives Prob( f ∈ Highd,k,e)≤
1

e(k+1) d̂egXdkq−(e(k+1)+ε)(n−k+d
n−k ) which is in o(εe,k). �

Corollary 6.2. Let X ⊆ Pr
Fq

be an n-dimensional closed subscheme and let k < n. Then

lim
d→∞

q(k+1)(n−k+d
n−k ) Prob

(
f0, f1, . . . , fk of degree d
are not parameters on X

)
= #{(n−k)-planes L ⊆ Pr

Fq
such that L ⊆ X}.

Proof. Let N denote the number of (n−k)-planes L⊆Pr
Fq

such that L⊆ X . Choosing e=1 in Theorem 1.4,
we compute that

Prob( f0, f1, . . . , fk of degree d are parameters on X)= 1− Nq−(k+1)(n−k+d
n−k )+ o(q−(k+1)(n−k+d

n−k )).

It follows that

Prob( f0, f1, . . . , fk of degree d are not parameters on X)= Nq−(k+1)(n−k+d
n−k )+ o(q−(k+1)(n−k+d

n−k )).

Dividing both sides by q−(k+1)(n−k+d
n−k ) and taking the limit as d→∞ yields the corollary. �

7. Passing to Z and Fq[t]

In this section we prove Corollaries 1.6 and 1.7.

Definition 7.1. Let B = Z or Fq [t] and fix a finitely generated, free B-module Bs and a subset S ⊆ Bs .
Given a ∈ Bs we write a = (a1, a2, . . . , as). The density of S ⊆ Bs is

Density(S) :=

{
limN→∞

#{a∈S|max{|ai |}≤N }
#{a∈Zs |max{|ai |}≤N } if B = Z,

limN→∞
#{a∈S|max{deg ai }≤N }

#{a∈Fq [t]s |max{deg ai }≤N } if B = Fq [t].

Proof of Corollary 1.6. For clarity, we will prove the result over Z in detail and at the end, mention the
necessary adaptations for Fq [t].

We first let k < n. Given degree d polynomials f0, f1, . . . , fk with integer coefficients and a prime p,
let f 0, f 1, . . . , f k be the reduction of these polynomials mod p. Then f 0, f 1, . . . , f k will be parameters
on X p if and only if the point f = ( f 0, f 1, . . . , f k) lies Dd,k(XFp). As noted in Remark 4.1, this is



2096 Juliette Bruce and Daniel Erman

equivalent to asking that f is an Fp-point of Dk,d(XZ). Thus, we may apply [Ekedahl 1991, Theorem 1.2]
to Dd,k(XZ)⊆ Ak,d (using M = 1) to conclude that

Density
{

f0, f1, . . . , fk of degree d
that restrict to parameters on X p for all p

}
=

∏
p

Prob
(

f0, f1, . . . , fk of degree d
restrict to parameters on X p

)
.

Applying Proposition 5.1 to estimate the individual factors; we have:

Density
{

f0, f1, . . . , fk of degree d that

restrict to parameters on X p for all p

}
= lim

d→∞

∏
p

Prob
(

f0, f1, . . . , fk of degree d

restrict to parameters on X p

)
≥ lim

d→∞

∏
p

(1− d̂eg(X p)(1+ d + · · ·+ dk)p−(
n−k+d

n−k )).

Lemma 7.2 shows that there is an integer D where D≥ d̂eg(X p) for all p. Moreover, 1+d+· · ·+dk
≤ kdk

for all d , and hence:

≥ lim
d→∞

∏
p

(1− Dkdk p−(
n−k+d

n−k )).

For d � 0 we can make Dkdk p−(
n−k+d

n−k ) ≤ p−d/2 for all p simultaneously. Using ζ(n) for the Riemann
zeta function, we get:

≥ lim
d→∞

∏
p

(1− p−d/2)≥ lim
d→∞

ζ(d/2)−1
= 1.

We now consider the case k = n. This follows by a “low degree argument” exactly analogous to
[Poonen 2004, Theorem 5.13]. Fix a large integer N and let Y be the union of all closed points P ∈ X
whose residue field κ(P) has cardinality at most N . Since Y is a finite union of closed points, we see that
for d � 0, there is a surjection

H 0(Pr ,OPr (d))→ H 0(Y,OY (d))∼=
⊕
P∈X

#κ(P)≤N

H 0(P,OP(d))→ 0.

It follows that we have a product formula

Density
{

f0, f1, . . . , fn of degree d do not all
vanish on a point P with #κ(P)≤ N

}
=

∏
P∈X,#κ(P)≤N

(
1−

1
#κ(P)n+1

)
This is certainly an upper bound on the density of f0, f1, . . . , fn that are parameters on X p for all p. As
N →∞ the right-hand side approaches ζX (n+ 1)−1. However, since the dimension of X is n+ 1, this
zeta function has a pole at s = n+ 1 [Serre 1965, Theorems 1 and 3(a)]. Hence this asymptotic density
equals 0. This completes the proof over Z.

Over Fq [t], the key adaptation is to use [Poonen 2003, Theorem 3.1] in place of Ekedahl’s result.
Poonen’s result is stated for a pair of polynomials, but it applies equally well to n-tuples of polynomials
such as the n-tuples defining Dk,d(X). In particular, one immediately reduces to proving an analogue of
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[Poonen 2003, Lemma 5.1], for n-tuples of polynomials which are irreducible over Fq(t) and which have
gcd equal to 1; but the n = 2 version of the lemma then implies the n ≥ 2 versions of the lemma.2 The
rest of our argument over Z works over Fq [t]. �

Lemma 7.2. Let X ⊆ Pr
B be any closed subscheme. There is an integer D where D ≥ d̂eg(Xs) for all

s ∈ Spec B.

Proof. First we take a flattening stratification for X over B [EGA IV4 1967, Corollaire 6.9.3]. Within each
stratum, the maximal degree of a minimal generator is semicontinuous, and we can thus find a degree e
where Xs is generated in degree e for all s ∈ Spec B. By [Bayer and Mumford 1993, Proposition 3.5], we
then obtain that d̂eg(X)≤

∑n
j=0 er− j . In particular defining D := rer will suffice. �

To prove Corollary 1.7, we use Corollary 1.6 to find a submaximal collection f0, f1, . . . , fn−1 which
restrict to parameters on Xs for all s ∈Spec B. This cuts X down to a scheme X ′= X∩V( f0, f1, . . . , fn−1)

with 0-dimensional fibers over each point s. When B = Z, such a scheme is essentially a union of orders
in number fields, and we find the last element fn by applying classical arithmetic results about the Picard
groups of rings of integers of number fields. When B = Fq [t], we use similar facts about Picard groups
of affine curves over Fq .

An example illustrates this approach. Let X = P1
Z = Proj(Z[x, y]). A polynomial of degree d will be

a parameter on X as long as the d + 1 coefficients are relatively prime. Thus as d→∞, the density of
these choices will go to 1. However, once we have fixed one such parameter, say 5x − 3y, it is much
harder to find an element that will restrict to a parameter on Z[x, y]/(5x−3y) modulo p for all p. In fact,
the only possible choices are the elements which restrict to units on Proj(Z[x, y]/(5x − 3y)). Among the
linear forms, these are

±(7x − 4y)+ c(5x − 3y) for any c ∈ Z.

Hence, these elements arise with density zero, and yet they form a nonempty subset.
Lemmas 7.3 and 7.4 below are well-known to experts, but we sketch the proofs for clarity.

Lemma 7.3. If X ′ ⊆ Pr
Z is closed and finite over Spec(Z), then Pic(X ′) is finite.

Proof. We first reduce to the case where X ′ is reduced. Let N ⊆ OX ′ be the nilradical ideal. If X ′

is nonreduced then there is some integer m > 1 for which Nm
= 0. Let X ′′ be the closed subscheme

defined by Nm−1. We have a short exact sequence 0→Nm−1
→O∗X ′→O∗X ′′→ 1 where the first map

sends f 7→ 1+ f . Since X ′ is affine and noetherian and Nm−1 is a coherent ideal sheaf, we have that
H 1(X ′,Nm−1) = H 2(X ′,Nm−1) = 0 [Hartshorne 1977, Theorem III.3.7]. Taking cohomology of the
above sequence thus yields an isomorphism Pic(X ′)∼= Pic(X ′′). Iterating this argument, we may assume
X ′ is reduced.

We now have X ′ = Spec(B) where B is a finite, reduced Z-algebra. If Q is a minimal prime of
B, then B/Q is either zero dimensional or an order in a number field, and hence has a finite Picard
group [Neukirch 1999, Theorem I.12.12]. If B has more than one minimal prime, then we let Q′ be the

2We thank Bjorn Poonen for pointing out this reduction.
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intersection of all of the minimal primes of B except for Q, and we again have an exact sequence in
cohomology

· · · → (B/(Q+ Q′))∗→ Pic(X ′)→ Pic(B/Q)⊕Pic(B/Q′)→ · · ·

Since (B/(Q+ Q′))∗ is a finite set, and since B/Q and B/Q′ have fewer minimal primes than B, we
may use induction to conclude that Pic(X ′) is finite. �

Lemma 7.4. If C is an affine curve over Fq , then Pic(C) is finite.

Proof. If C fails to be integral, then an argument entirely analogous to the proof of Lemma 7.3 reduces us
to the case C is integral. We next assume that C is nonsingular and integral, and that C is the corresponding
nonsingular projective curve. Since C is affine we have Pic(C)= Pic0(C)⊆ Pic0(C)∼= Jac(C)(Fq), the
last of which is a finite group. If C is singular, then the finiteness of Pic(C) follows from the nonsingular
case by a minor adaptation of the proof of [Neukirch 1999, Proposition I.12.9]. �

Proof of Corollary 1.7. By Corollary 1.6, for d � 0 we can find polynomials f0, f1, . . . , fn−1 of degree
d that restrict to parameters on Xs for all s ∈ Spec B. Let X ′ := V( f0, f1, . . . , fn−1)∩ X , which is finite
over B by construction. Let A be the finite B-algebra where Spec A = X ′. Lemma 7.3 or 7.4 implies
that H 0(X ′,OX ′(e))= A for some e. We can thus find a polynomial fn of degree e mapping onto a unit
in the B-algebra A. It follows that V( fn)∩ X ′ =∅. Replace fi by f e

i for i = 0, . . . , n− 1 and replace
fn by f d

n . Then we have f0, f1, . . . , fn of degree d ′ := de and restricting to parameters on Xs for all
s ∈ Spec(B) simultaneously.

We thus obtain a proper morphism π : X → Pn
B where Xs → Pn

κ(s) is finite for all s. Since π is
quasifinite and proper, it is finite by [EGA IV3 1966, Théorème 8.11.1]. �

The following generalizes Corollary 1.7 to other graded rings.

Corollary 7.5. Let B=Z or Fq [t] and let R be a graded, finite type B-algebra where dim R⊗Z Fp= n+1
for all p. Then there exist f0, f1, . . . , fn of degree d for some d such that B[ f0, f1, . . . , fn] ⊆ R is a
finite extension.

Proof. After replacing R by a high degree Veronese subring R′, we may assume that R′ is generated
in degree one and contains no R′

+
-torsion submodule, where R′

+
⊆ R′ is the homogeneous ideal of

strictly positive degree elements. Let r + 1 be the number of generators of R′1. Then there is a surjection
φ : B[x0, x1, . . . , xr ] → R′ inducing an embedding of X := Proj(R′) ⊆ Pr

B . Since R′ contains no R′
+

-
torsion submodule, the kernel of φ will be saturated with respect to (x0, x1, . . . , xr ) and hence R′ will
equal the homogeneous coordinate ring of X . Choosing f0, f1, . . . , fn as in Corollary 1.7, it follows that
B[ f0, f1, . . . , fn] ⊆ R′ is a finite extension, and thus so is B[ f0, f1, . . . , fn] ⊆ R. �

8. Examples

Example 8.1. By Corollary 6.2, it is more difficult to randomly find parameters on surfaces that contain
lots of lines. Consider V(xyz)⊂ P3 which contains substantially more lines than V(x2

+ y2
+ z2)⊂ P3.
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Using [Macaulay2] to select 1,000,000 random pairs ( f0, f1) of polynomials of degree two, the proportion
that failed to be systems of parameters were

V(xyz) V(x2
+ y2
+ z2)

F2 .2638 .1179
F3 .0552 .0059
F5 .0063 .0004

Example 8.2. Let X ⊆ P3
Fq

be a smooth cubic surface. Over the algebraic closure X has 27 lines, but
it has between 0 and 27 lines defined over Fq . For example, working over F4, the Fermat cubic surface
X ′ defined by x3

+ y3
+ z3
+w3 has 27 lines, while the cubic surface X defined by x3

+ y3
+ z3
+ aw3

where a ∈ F4 \ F2 has no lines defined over F4 [Debarre et al. 2017, Section 3]. It will thus be more
difficult to find parameters on X than on X ′. Using [Macaulay2] to select 100,000 random pairs ( f0, f1)

of polynomials of degree two, 0.62% failed to be parameters on X whereas no choices whatsoever failed
to be parameters on X ′. This is in line with the predictions from Corollary 6.2; for instance, in the case of
X , we have 27 · 4−2·3

≈ 0.66%.

Example 8.3. Let X = [1 : 4] ∪ [3 : 5] ∪ [4 : 5] = V((4x − y)(5x − 3y)(5x − 4y))⊆ P1
Z and let R be the

homogeneous coordinate ring of X . The fibers are 0-dimensional so finding a Noether normalization
X → P0

Z is equivalent to finding a single polynomial f0 that restricts to a unit on each of the points
simultaneously. We can find such an f0 of degree d if and only if the induced map of free Z-modules
Z[x, y]d → Rd is surjective. A computation in [Macaulay2] shows that this happens if and only if d is
divisible by 60.

Example 8.4. Let R = Z[x]/(3x2
− 5x) ∼= Z⊕Z

[1
3

]
. This is a flat, finite type Z-algebra where every

fiber has dimension 0, yet it is not a finite extension of Z. However, if we take the projective closure of
Spec(R) in P1

Z, then we get Proj(R) where R = Z[x, y]/(3x2
− 5xy). If we then choose f0 := 4x − 7y,

we see that Z[ f0] ⊆ R is a finite extension of graded rings.

Example 8.5. Let k be a field and let X = [1 : 1+ t]∪[1− t : 1] =V((y−(1+ t)x)(x−(1− t)y))⊆P1
k[t].

Let R be the homogeneous coordinate ring of X . In degree d, we have the map φd : k[t][x, y]d ∼=
k[t]d+1

→ Rd ∼= k[t]2. Choosing the standard basis xd , xd−1 y, . . . , yd for the source of φd , and the two
points of X for the target, we can represent φd by the matrix(

1 1+ t (1+ t)2 · · · (1+ t)d

(1− t)d (1− t)d−1 (1− t)d−2
· · · 1

)
.

It follows that imφd = im
( t2

0
(1+t)d

1

)
= im

( t2

0
1+dt

1

)
. The image of φd thus contains a unit if and only if the

characteristic of k is p and p | d . In particular, if k =Q, then we cannot find a polynomial f0 inducing a
finite map X→ P0

Q[t].

Example 8.6. Let k be any field, let B = k[s, t], and let X = [s : 1]∪ [1 : t] =V((x− sy)(y− t x))⊆P1
B .

We claim that for any d > 0, there does not exist a polynomial that restricts to a parameter on Xb for each
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point b ∈ B. Assume for contradiction that we had such an f =
∑d

i=0 ci si td−i with ci ∈ B. After scaling,
we obtain

f ([s : 1])= c0sd
+ c1sd−1

+ · · ·+ cd = 1 and f ([1 : t])= c0+ c1t + · · ·+ cd td
= λ

where λ ∈ B∗ = k∗. Substituting for cd we obtain

f ([1 : t])= c0+ c1t + · · ·+ cd−1td−1
+ (1− (c0sd

+ c1sd−1
+ · · ·+ cd−1s))td

= λ,

which implies that

λ− td
= c0+ c1t + · · ·+ cd−1td−1

− (c0sd
+ c1sd−1

+ · · ·+ cd−1s)td

= (c0− c0sd td)+ (c1t − c1sd−1td)+ · · ·+ (cd−1td−1
− cd−1std)

= (1− st)h(s, t)

where h(s, t) ∈ k[s, t]. This implies that λ− td is divisible by (1− st), which is a contradiction.
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